Основы прикладной теории гироскопа
Основным элементом любого гироскопического прибора является гироскоп. Слово гироскоп греческого происхождения: гирос — вращение, скопейн — наблюдать. Термин гироскоп был введен французским ученым Л. Фуко, который В технике гироскопом называют быстро вращающееся симметричное тело (ротор), установленное в специальном подвесе. В авиационных приборах используется, как правило, карданов подвес. Основой авиационных гироскопических приборов являются трехстепенные и двухстепенные гироскопы.
Трехстепенной гироскоп (рис 3.1). Он состоит из ротора 1, внутренней 2 и наружной 3 рам. Ротор гироскопа 1 вращается в опорах вокруг оси OZв внутренняя рама вместе с ротором может поворачиваться вокруг оси OХв, а наружная рама имеет свободу вращения вокруг оси 0Ун относительно неподвижного основания. Таким образом, ротор гироскопа имеет три степени свободы, так как может вращаться вокруг трех осей системы ОХвУнZв, пересекающихся в одной точке О. Такой гироскоп называют трехстепенным. Если центр тяжести гироскопа совпадает с точкой О, то его называют астатическим.
Рис 3.1. Гироскоп с тремя степенями вободы.
1-ротор, 2-ось собстенного вращения, 3-внутренняя рама карданова подвеса, 4-внешняя рама карданова подвеса, 5-внутренняя ось подвеса, 6-внешняя ось подвеса.
Гироскоп с быстро вращающимся ротором обладает рядом свойств,которые обусловливают его широкое применение в авиационных приборах. Основными свойствами трехстепенного гироскопа являются способность сохранять неизменное положение оси вращения ротора в мировом пространстве, невосприимчивость к толчкам и ударам (устойчивость), способность совершать прецессионное движение.
Рассмотрим визуальные проявления свойств трехстепенного гироскопа при лабораторном эксперименте. Направим ось быстро вращающегося ротора гироскопа на определенную точку в пространстве. Совершая колебательные движения основания в разных плоскостях, обнаружим, что ось ротора сохраняет приданное ей направление. При ударе по какой-либо раме гироскопа молотком с резиновым наконечником замечаем слабо различимые колебания оси ротора, которые быстро затухают. Положение оси ротора в пространстве практически не изменяется. Нажимая на внутреннюю раму (создавая момент внешних сил относительно оси OХв), обнаружим, что гироскоп поворачивается вокруг оси 0Ун наружной рамы, а внутренняя рама остается неподвижной. Таким образом, гироскоп поворачивается не по направлению действия внешней силы, а в плоскости, перпендикулярной направлению этой силы. Такое движение гироскопа под действием момента внешней силы называют прецессионным.
Явление, заключающееся в сопротивляемости быстро вращающегося тела попыткам изменить его положение в пространстве, называют гироскопическим эффектом. Для пояснения сущности гироскопического эффекта рассмотрим трехстепенной гироскоп, условно освобожденный от рам карданова подвеса (рис. 3.2).
Предположим вначале, что гироскоп не вращается» и приложим в некоторой точке А внешнюю силу . Под действием силы гироскоп начнет вращаться вокруг горизонтальной оси 0хв. Другим будет результат действия силы , если ротору гироскопа сообщить большую угловую скорость Ω. В этом случае ротор гироскопа будет обладать кинетическим моментом , где J — момент инерции ротора относительно оси OZв. Обозначим конец вектора кинетического момента буквой В. Главный момент внешней силы приложенный к гироскопу, совпадает с направлением оси OХв. В соответствии с теоремой Резаля скорость v конца вектора кинетического момента (т.е. точки В) геометрически равна главному моменту внешних сил . Следовательно, скорость v направлена параллельно оси OХв и равна по величине . Таким образом, при действии силы на вращающийся гироскоп движение гироскопа происходит не по направлению силы FB, что имеет место в случае невращающегося ротора, а перпендикулярно к направлению действия силы , т. е. относительно оси 0Ун. Это движение и является прецессионным движением гироскопа. Тот факт, что при действии момента гироскоп не вращается относительно оси OХв, говорит о том, что кроме момента на него действует еще какой-то момент, равный моменту и противоположно направленный.
Рис. 3.2. Схема действия сил и моментов при вращении гироскопа
ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К КОНСТРУКЦИИ ГИРОСКОПИЧЕСКИХ ПРИБОРОВ
Как было показано в предыдущем разделе, гироскоп должен иметь. По возможности большой кинетический момент. Кинетический момент гироскопа — это произведение момента инерции ротора относительно оси вращения Iz на угловую скорость вращения H=IzΩ. Следовательно, можно увеличивать кинетический момент за счет увеличения момента инерции. Поскольку момент инерции тела вращения выражается форму
(3.1)
где т — масса тела; R — радиус, то выгодно массу ротора размещать по возможности на большем удалении от оси вращения. В связи с этим роторы гиромоторов имеют конфигурацию такую, как показано на рис. 3.3. Ротор гиромотора 1 одновременно является якорем асинхронного двигателя переменного тока; в якоре имеется беличье колесо. Статором же у такого двигателя является внутренняя обмотка 2.
Рис 3.3 гиромотор в разрезе: 1-ротор, 2-статор.
Конструкция ротора выбирается в основном из соображений максимального момента инерции и отсутствия деформаций ротора от действия центробежных сил, возникающих при вращении ротора.
Авиационные гиромоторы питаются трехфазным напряжением U= 36 В с частотой f = 400 Гц. Так как они являются асинхронными двигателями, обладающими скольжением, то обороты ротора гиромоторов п = 22000 ÷23000 об/мин. Существуют гиромоторы, имеющие существенно большие угловые скорости, но ввиду того, что ресурс работы подшипников таких гиромоторов обратно пропорционален угловой скорости ротора, в гражданской авиации их не применяют.
Рис 3.4 вращающиеся подшипники:
1- ось, 2-внутреннее кольцо, 3- неподвижное кольцо
Рис 3.5 электромеханическая схема гироскопического подвеса
1- внутреннее кольцо, 2,4-средние кольца,4-наружное кольцо, Д1,Д2-двигатели
Поскольку способность гироскопа точно сохранять положение своей главной оси в пространстве зависит от величины моментов, действующих по осям его карданова подвеса, при конструировании гироскопов стараются свести эти моменты к минимуму.
В качестве опор для осей карданова подвеса гироскопа используют высокопрецизионные подшипники качения с малыми моментами трения.
Для особо точных приборов, например, гироскопов для курсовых систем, применяют так называемые вращающиеся подшипники с двумя рядами шариков, причем внутреннее кольцо 2(рис. 3.4) совершает принудительное вращение относительно оси 1 и неподвижного кольца 3.
На принципиальную возможность уменьшения влияния трения в подобных устройствах указал Н. Е. Жуковский. Идея Н. Е. Жуковского сводилась к следующему: если имеется 100 натянутых ниток, на которых лежит какой-нибудь предмет, например, карандаш, то, перемещая все нити вправо, карандаш будет увлекаться ими за счет трения тоже вправо. Если перемещать нити влево, то и карандаш будет двигаться влево. Заставляя каждую четную нить двигаться вправо, а нечетную — влево, будем иметь карандаш неподвижным. Конечно, это при условии, что на каждую нить будет выпадать одинаковая доля массы карандаша и коэффициент трения контактных поверхностей карандаш — нить везде одинаков. В этом примере трение не исчезает, оно только взаимно компенсируется.
На рис. 3.5 представлена конструкция внутренней рамы карданопа подвеса (гироузла). Как видно из рисунка, внутренние кольца 2и 4левого и правого подшипников могут поворачиваться двигателями Д1 и Д2. Причем кольца вращаются с одинаковыми угловыми скоростями, но в противоположные стороны. Возникающие при этом силы трении воздействуют на внутреннюю ось гироскопа с помощью моментов, направления которых противоположны, поэтому их суммарная величина оказывается близкой к нулю, и вредное воздействие моментов трения ослабляется. Сели даже суммарная величина моментов трения заставляет гироскоп прецессировать с некоторой небольшой скоростью, то периодическим изменением направления вращения двигателей (с помощью переключателя В со специальным кулачком) можно менять направление действия этого момента, а следовательно, и направление прецессии, что, в конечном счете уменьшает прецессию гироскопа от моментов трения в осях карданова подвеса С помощью такой схемы удается уменьшить собственные «уходы» гироскопа в несколько раз по сравнению с обычными подшипниками качения.
Рис 3.6 действие на гироскоп силы тяжести.
Существуют гироскопы с аэродинамическими подшипниками по осям карданова подвеса. Такой подшипник представляет собой втулку и ось, между которыми имеется воздушный зазор и ось как бы «плавает» в воздухе. Такие подшипники тоже имеют весьма малые моменты трения, но в гражданской авиации в силу ряда причин пока не применяются.
Гироскоп должен быть тщательно сбалансирован, т. е. центр масс гиромотора должен совпадать с точкой пересечения осей карданова подвеса. В противном случае, как показано на рис. 3.6, на гироскоп действуют моменты от ускорения силы тяжести.
Следует заметить, что при эксплуатации авиационных гироскопических приборов необходимо строго выполнять правила технической и летной эксплуатации, так как от этого зависит точность их работы и долговечность. Необходимо также помнить, что гироскопические приборы являются приборами дорогостоящими.
3.3. Гироскопические асинхронные двигители
Гироскопический двигатель предназначен для разгона маховой массы за определенный промежуток времени до номинальной частоты вращения и для последующей ее стабилизации при минимальном потреблении энергии. В настоящее время широкое применение нашли электрические гироскопические двигатели и, в частности, асинхронные.
Асинхронный гироскопический двигатель (АГД) конструктивно объединен в одно целое с маховиком (рис.3.7). Для обеспечения при заданных габаритах и массе наибольшего кинетического момента
H = J W, (3.2)
где J - момент инерции маховика относительно оси вращения; W - угловая скорость, стремятся вращающуюся массу разместить на максимальном удалении от оси вращения. С этой целью применяют обращенную конструкцию асинхронного двигателя с внешним короткозамкнутым ротором 1 (рис.3.7) и с внутренним неподвижным статором 2 . Для повышения кинетического момента внешний ротор располагают внутри специальной втулки 3, к которой крепятся крышки 4, 5. Втулка выполняется из латуни или бериллия.
Повышение кинетического момента при заданной массе внешнего ротора связано также с максимальным повышением его угловой скорости W (частоты вращения n). Частота вращения современных АГД лежит в пределах n = 15000 ¸ 60000 об/мин при числе пар полюсов р = 1; 2. Иногда для повышения частоты вращения АГД его питание осуществляют от автономного источника с повышенной частотой f = 500 ¸ 2000 Гц. Максимум частоты вращения АГД ограничен, как правило, качеством шарикоподшипников.
Отношение кинетического момента Н к массе АГД называют добротностью гироскопического двигателя. Ее повышение обеспечивается увеличением плотности материала частей конструкции, вращающихся на большом удалении от оси, и уменьшением ее для всех остальных элементов.
На валу АГД нет полезной нагрузки. Он работает в режиме холостого хода, преодолевая моменты трения внешнего ротора о газовую среду и трения в подшипниках, при нулевом к.п.д. Условным к.п.д. АГД принято считать отношение мощности механических потерь к полной потребляемой мощности, характеризующее совершенство асинхронного двигателя в электромагнитном отношении. Величина условного к.п.д. в зависимости от мощности, конструктивного исполнения и параметров АГД лежит в пределах h = 0,2 ¸ 0,9.
Рис. 3.7. Конструкция асинхронного гироскопического двигателя (АГД)
Для повышения стабильности частоты вращения при изменении плотности окружающей среди, связанной с изменением высоты полета летательного аппарата, номинальное скольжение АГД выбирают в пределах Sн = 0,015 ¸ 0,12. В некоторых случаях с целью исключения влияния высоты полета на работу АГД его помешают в специальную газовую или вакуумную камеру. Снижение вентиляционных потерь достигается в АГД полировкой внешней поверхности ротора.
Улучшение характеристик АГД путем увеличения массы ротора с другой стороны приводит к увеличению длительности процесса его запуска, которая лежит в пределах от десятков секунд до десятков минут. Для обеспечения приемлемых пусковых характеристик при проектировании АГД стремятся добиться кратности пускового момента Mп / Mн > 1,5, кратности максимального момента (перегрузочной способности) MЭМ М / Mн = 2 ¸ 5 и критического скольжения Sкр = 0,3 ¸ 0,4. Под номинальным моментом АГД понимают суммарный момент его потерь в номинальном режиме.
Поскольку АГД работает с нагрузкой, близкой по своему характеру к вентиляционной, то в процессе запуска избыточный электромагнитный момент DMЭМ меняется не существенно (рис. 3.8). При этом запуск происходит с практически постоянным ускорением. Для сокращения времени запуска иногда применяют запуск АГД при повышенном напряжении питания.
Рис.3.8. Механическая характеристика АГД
Стремление по возможности уменьшить суммарный момент потерь, т.е. величины номинального скольжения и активной составляющей тока статора, обусловило характерную особенность АГД - относительно большой намагничивающий ток, достигающий 60 - 90% от номинального значения. Коэффициент мощности составляет при этом cosj =0,4 + 0,8. Он будет тем меньшим, чем с меньшим скольжением работает АГД.
Для обеспечения максимальной точности к АГД предъявляется ряд специфических требований:
- механическая стабильность элементов конструкции и их соединений, т.е. способность элементов конструкции сохранять постоянство положений центров масс в различных режимах работы и при различных внешних воздействиях;
- симметрия и жесткость конструкции в целом, связанные с необходимостью симметричного расположения (относительно продольной и поперечной осей симметрии) вращающихся и наиболее нагретых элементов конструкции, имеющих значительную массу;
- минимум и постоянство в процессе работы потребляемой мощности, т.е. нагрева АГД, и неравномерности распределения температур, что связано с уменьшением аэродинамических потерь (потерь на трение внешнего ротора о воздух), с обеспечением постоянства осевой нагрузки на подшипники и сохранности смазки, с применением подшипников, их сборок и смазки повышенного качества.
Реализация этих требований привела к созданию симметричных конструкций АГД, состоящих из минимального количества элементов. Так, например, внутренние дорожки качения подшипников (рис.3.7) часто изготавливаются непосредственно на оси, чем сокращается количество соединений деталей и повышается точность сборки.
В отличие от асинхронных машин обычного исполнения АГД не имеют осевого люфта в подшипниковых узлах. Требуемая жесткость конструкции обеспечивается предварительной осевой нагрузкой подшипников, которая в процессе работы должна оставаться неизменной.
Симметрия и жесткость конструкции АГД достигаются применением конструкционных материалов, имеющих одинаковый коэффициент расширения. Так, например, ось, крышки, кольца подшипников и ротор АГД выполняются из подшипниковой стали, а втулка - из бериллия.
Указанные особенности относятся также к синхронным гироскопическим двигателям (СГД), в качестве которых находят широкое применение гистерезисные двигатели .
В гироскопах авиационных приборов, устанавливаемых на самолетах гражданской авиации, ротор объединен с внутренней рамой в единый конструктивный блок — гироузел. Гироузел состоит из гирокамеры и размещенного в гирокамере гиромотора. Гирокамера выполняет роль внутренней рамы гироскопа и имеет оси для подвеса в опорах наружной рамы. Гиромоторы в большинстве случаев представляют собой трехфазные асинхронные двигатели с короткозамкнутым внешним ротором и внутренним статором. Гиромотор ГМ-4П (рис. 3.9) состоит из ротора, статора, шарикоподшипниковых опор и оси. Статор имеет пакет железа 2, обмотку 1 и втулками 3 и 12 жестко укреплен на оси 5. Выходные провода обмотки статора выведены наружу через полую часть оси 5. Ротор гиромотора состоит из латунного обода 10, пакета железа 8 с короткозамкнутой обмоткой 16 и массивного кольца 14. Пакет 8 ротора и кольцо 14 посажены в обод ротора на прессовой посадке. Фланцы 6 и 11 посажены в обод 10 с натягом и крепятся к нему винтами. Внутренние кольца шариковых подшипников 4 и 13 установлены на цапфы фланцев 6 и 11 ротора с натягом. Наружное кольцо подшипника 4 вставлено во втулку 3 с радиальным зазором, а наружное кольцо подшипника 13 — во втулку 12 с натягом В гнезде статора под наружным кольцом свободно сидящего шарикового подшипника 4 поставлена пружинная шайба 7. Она служит для компенсации температурных изменений линейных размеров гиромотора Прокладки 9 и 15 служат для установления осевого натяга на шариковых подшипниках Концы оси гиромотора имеют резьбу. При помещении гиромотора в гирокамеру его ось пропускается через отверстия в корпусе и крышки гирокамеры После крепления крышки гирокамеры к ее корпусу ось гиромотора крепится к ним с помощью гаек. Гироузлы одинаковых типов могут применяться в различных гироскопических приборах, Иначе обстоит дело с наружными рамами. Конструктивное исполнение наружных рам определяется в первую очередь типом гироприбора и является в каждом конкретном случае сугубо индивидуальным. В раме 1 на посадочные места по оси Охн закрепляются наружные кольца шариковых подшипников (рис. 3.10) Во внутренних кольцах шариковых подшипников закрепляются оси гирокамеры гироузла. По оси 0ун в раме закреплены полуоси 2 и 3, предназначенные для подвеса рамы в корпусе гироприбора.
Рис. 3.9.Консрукция гиромотора ГМ-4П
Рис. 3.10. Конструкция наружной рамы гироприбора
3.4 Виды подвесов гироскопа
При конструировании гироприборов большое внимание уделяется выбору опор, обеспечивающих свободу вращения и осуществляющих двустороннюю удерживающую связь между ротором, рамами карданова подвеса и корпусом прибора. Опоры гироскопа делятся на главные, обеспечивающие свободу вращения ротора, и опоры карданова подвеса, обеспечивающие свободу движения рам вокруг своих осей. Такая классификация обусловлена различными условиями работы опор Главные опоры в течение длительного времени работают при повышенных скоростях вращения, в то время как опоры карданова подвеса работают при малых скоростях и небольших углах поворота. Основными показателями качества опор являются: момент сил трения Мтр, осевые я радиальные люфты, долговечность работы Тр. Момент сил трения в главных опорах не влияет на точность гироприбора, но влияет на выбор мощности гиромотора и срок его службы. Момент трения в опорах карданова подвеса в значительной степени оказывает влияние на точность гироприбора. В связи с этим разрабатываются специальные меры для снижения трения в опорах карданова подвеса Отрицательное влияние на точность гироприборов оказывают также люфты в главных опорах карданова подвеса.
Наибольшее распространение в авиационных гироскопах получили шарикоподшипниковые опоры. Разработанные в настоящее время опоры такого типа позволяют получить достаточную точность и надежность приборов.
В тех случаях, когда необходимо повысить точность работы прибора, используют определенные конструктивные меры. В частности, моменты трения по внутренним осям карданова подвеса гироагрегатов курсовых систем уменьшают с помощью специальных «вращающихся» подшипников (рис. 3.11). Гироузел 3 трехстепенного гироскопа подвешен на оси 4 в наружной раме 7 с помощью комбинированных двойных подшипников. Средние кольца 2, 8 подшипников на левом и правом концах оси подвеса гироузла приводятся во вращение в противоположные стороны (привод вращения средних колец на рисунке не показан). Оси вращения 5, 9 наружной рамы закреплены в подшипниках 1, 6, наружные кольца которых неподвижны относительно основания.
Пусть кинетический момент гироскопа совпадает с направлением полета. Тогда при повороте самолета относительно поперечной оси с угловой скоростью Ф наружная рама гироскопа будет разворачиваться вместе с основанием относительно неподвижной оси 4 подвеса гироузла с угловой скоростью — .Ось 4 остается неподвижной в силу основного свойства трехстепенного гироскопа — сохранять неизменным в пространстве положение главной оси.
При равенстве моментов трения в опорах уход гироскопа отсутствует. Однако на практике равенства моментов обеспечить не удается и уход имеет место, но со значительно меньшей скоростью, чем при невращающихся опорах. Снижению систематического ухода способствует введение периодического реверсирования вращения средних колец.
Рис. 3.11. Схема конструкции «вращающихся» подшипников
В случае равных и небольших времен вращения средних колец подшипников в разные стороны при реверсировании гироскоп будет отклоняться от среднего положения на равные и противоположные углы, совершая тем самым малые колебания относительно первоначального положения оси кинетического момента.
Рис. 3.12. Привод вращения средних колес «вращающихся» подшипников
Реверсирование вращения средних колец подшипников в гироагрегатах курсовых систем (рис. 3.12) производится переключателем В', управляемым специальным кулачком. Кроме «вращающихся» подшипников, могут быть использованы другие конструкции, позволяющие существенно снизить (или практически исключить) трение в подвесе гироскопа путем компенсации силы тяжести подвешиваемой части гироскопа некоторой другой противоположно направленной силой. К подвесам такого типа (рис. 3.13) относят: жидкостный (а), гидростатический (б), магнитный (в), электростатический (г) и др.
Из перечисленных типов подвесов в авиационных гироскопических приборах используется в настоящее время только жидкостный подвес (рис, 3.13, а). В гироскопе герметичный гироузел 1 подвешивается в герметичном корпусе 2, заполненном жидкостью. Плотность жидкости подбирается такой, чтобы масса вытесняемого гироузлом объема жидкости была равна массе гироузла. Тем самым воспринимаемая опорами нагрузка снижается практически до нуля, что обеспечивает весьма малые моменты сил трения в опорах подвеса гироузла.
Существуют также гироприборы на основе трехстепенного гироскопа с подвесом данного типа.
В гидростатическом подвесе жидкость или газ вводится под давлением через узкие отверстия 1 в зазор 2 между неподвижной частью опоры 4 и гироузлом 3 (рис. 3.13, б). При уменьшении зазора, вызванном нагрузкой, уменьшение расхода жидкости приводит к увеличению местного давления. Параметры подвеса выбираются таким образом, чтобы сумма сил местного давления уравновешивала силу веса гироузла при зазоре в пределах сотых долей миллиметра.
Магнитный подвес чувствительного элемента используется в криогенных гироскопах. Техническая реализация такого гироскопа базируется на использовании явления сверхпроводимости некоторых материалов, которое наступает при температурах, близких к абсолютному нулю. Это явление состоит в резком уменьшении электрического сопротивления материала. При помещении шарика из сверхпроводящего материала в магнитное поле, напряженность которого не превышает некоторого критического значения, на его поверхности наводятся токи, препятствующие проникновению поля внутрь шарика. Вследствие этого шарик может висеть в магнитном поле, не имея механической точки опоры. Если вокруг шарика создан вакуум, то практически исключатся все силы сопротивления вращению шарика.
В экспериментальном криогенном гироскопе (рис. 3.13, в) корпус прибора представляет собой криогенную установку 7, заключенную в кожух 8 (сосуд Дьюара). Криогенная установка охлаждается жидким гелием или азотом и внутри сферической полости 4 в корпусе прибора поддерживается температура, близкая к абсолютному нулю. Ток, протекающий по обмоткам катушек 1, создает центрирующее магнитное поле 2. На поверхности полой тонкостенной сферы 3, сделанной из сверхпроводящего металла, например ниобия, образуются вихревые токи, создающие магнитное поле, препятствующее проникновению центрирующего магнитного поля в металл. Силы взаимодействия центрирующего магнитного поля и поля, наводимого в металле сферы, удерживают ее во взвешенном состоянии внутри сферической полости корпуса прибора. Сфера 3 и тяжелый обод (5, помещенный внутри сферы, образуют ротор гироскопа, который приводится во вращение с большой угловой скоростью Ω вокруг оси z, перпендикулярной плоскости обода, электродвигателем 5. В пространстве между сферическим ротором и полостью корпуса создается высокий вакуум. Электродвигатель 5 используется только для разгона ротора. После отключения двигателя ротор движется по инерции в течение нескольких дней и даже месяцев.
Рис. 3.13. Виды подвесов гироскопа
Гироскопы с электростатическим подвесом (рис. 3.13, г) конструктивно аналогичны криогенным гироскопам. Ротор 1 такого гироскопа изготовлен из бериллия в виде тонкого полого шара, помещенного в сферическую полость камеры 3, выполненной из специальной керамики, являющейся изолятором. На внутренней поверхности камеры расположены три пары чашеобразных электродов 2, питаемых переменным электрическим током. Оси симметрии каждой пары таких электродов направлены по трем взаимно перпендикулярным направлениям, поэтому создаваемое ими электростатическое поле удерживает центр сферического ротора в центре О камеры. Ротор раскручивается с помощью вращающегося магнитного поля, создаваемого статором 4, несущим на себе электрическую обмотку. В полости камеры 3 поддерживается высокий вакуум. Электрическое напряжение на обмотку статора подается лишь в период разгона ротора. В дальнейшем ротор длительное время вращается по инерции.
3.5 Устройства для передачи энергии
Устройства для передачи энергии служат для подвода электрической энергии от внешних источников к элементам гироприборов, расположенным на перемещающихся относительно друг друга узлах. С помощью данных устройств осуществляется электрическая связь между элементами, помещенными на корпусе прибора и наружной раме карданова подвеса или на наружной и внутренней рамах.
Наиболее просто энергия передается посредством гибких проволочных проводников (рис. 3.14), Гибкий проводник 3 представляет собой пучок металлических жил, помещенных в изоляционную оплетку.
Рис. 3.14. Использование гибкого проводника для передачи энергии в гироскопе
Концы жил заделаны в общий наконечник, закрепленный на переходных контактах 4. Контакты обеспечивают соединение наконечника с жестким проводом 5, расположенным на соответствующей детали 1 подвеса. Контакты монтируют на колодке 2, изолирующей контакты от металлической поверхности детали.
В тех случаях, когда углы взаимного разворота деталей гироприбора достигают существенных значений, для передачи энергии применяют скользящие контакты (рис. 3.15, а). Щетка 3, по которой передается электрический ток, скользит по токоприемному кольцу 2. Кольцо изолировано от оси рамы 1 сплошной изоляционной втулочкой с ребордами, предохраняющими щетку от схода с кольца. Если в местах сочленения деталей подвеса необходимо осуществить несколько изолированных друг от друга линий передачи электрического тока, то по оси подвеса устанавливается необходимое число токоприемных колец.
Широко применяемой разновидностью устройств передачи энергии являются точечные контакты. Они отличаются от скользящих контактов тем, что в данном случае точка контакта лежит на оси вращения элементов токоподвода. Каждый точечный контакт (рис. 3.15, б) состоит из неподвижного 3 и подвижного 4 контактов, образующих контактную пару. В приведенном примере неподвижные контакты закреплены на наружной раме 2, а подвижные—на оси вращения внутренней рамы 1. Контакты 3 и 4 изолированы от металлических деталей подвеса электроизоляционным материалом 5.
Рис 3.15 контактные устройства используемеые в гироприборах.
а-скальзящие, 2-набор точечных контактов.
3.6 Корректирующие устройства.
Одним из основных свойств трехстепенного гироскопа является способность сохранять неизменным положение оси вращения ротора (главной оси гироскопа) в мировом пространстве. Однако для решения ряда практических задач необходимо, чтобы главная ось гироскопа сохраняла неизменное направление не в мировом пространстве, а относительно той или иной выбранной системы координат. Так, для определения с помощью трехстепенного гироскопа углов крена и тангажа ЛА необходимо, чтобы ось вращения ротора была направлена по вертикали места. При определении с помощью трехстепенного гироскопа отклонений ЛА от заданного направления необходимо, чтобы его главная ось выдерживала заданное направление в горизонтальной плоскости. Для устранения нежелательных отклонений главной оси гироскопа от требуемого направления или компенсации различного рода возмущающих моментов, нарушающих нормальный режим работы гироскопического прибора, применяют корректирующие устройства.
Корректирующие устройства гироскопических приборов обеспечивают сохранность требуемого положения главной оси гироскопа путем приложения к гироскопу внешних управляющих (корректирующих) моментов или компенсацию уходов гироскопа в показаниях гироприбора. Основными элементами корректирующих устройств являются чувствительные элементы и исполнительные органы. В качестве чувствительных элементов выбирают элементы, обладающие избирательностью к опорному направлению или устойчиво сохраняющие заданное им направление, В авиационных приборах в основном используют гравитационные, магнитные и ориентированные по небесным светилам чувствительные элементы.
Опорным направлением для гравитационных элементов является направление вертикали места, совпадающее с направлением ускорения силы тяжести. Магнитные чувствительные элементы реагируют на магнитное поле Земли, поэтому опорным направлением для них является направление магнитного меридиана. Чувствительные элементы, ориентированные по небесным светилам, обеспечивают задание устойчивого направления на Солнце, Луну, планеты или звезды. Исполнительными органами корректирующих устройств авиационных приборов являются, как правило, двухфазные' реверсивные асинхронные электродвигатели, работающие в заторможенном режиме, а также сельсинные и потенциометрические следящие системы.
Среди гравитационных чувствительных элементов наиболее широкое распространение получили жидкостные маятниковые датчики направления вертикали. Используются однокоординатные и двухкоординатные жидкостные маятниковые датчики (маятниковые переключатели).
Однокоординатный жидкостный маятниковый датчик (ЖМД) (рис. 3.16) представляет собой стеклянный баллон 1 с вваренными в него платиновыми электродами 3, 5, 6. Баллон заполнен токопроводящей жидкостью (электролитом) 2 так, что оставшийся воздушный пузырек 4 при горизонтальном положении датчика поровну и примерно наполовину перекрывает электроды 3, 5. Электрическая схема взаимодействия ЖМД и исполнительного органа (двухфазного асинхронного двигателя) системы коррекции приведена на рис. 15.13. Электроды 3 и 6 в сосуде 5 соединены с обмотками управления двигателя 2, Общая точка обмоток управления 1подключена к одной из фаз источника литания переменного тока. Центральный контакт 4 подключен к другой фазе.
Рис. 3.16. Однокоординатный жидкостный маятниковый датчик
Рис. 3.17. Электрическая схема однокоординатной системы коррекции
Схемы коррекции главной оси трехстепенного гироскопа в плоскости горизонта и по направлению вертикали места приведены на рис. 3.18. На рис.3.18, а приведена схема горизонтальной коррекции главной оси
Рис. 3.18. Коррекция главной оси трехстепенного гироскопа:
а – схема горизонтальной коррекции; б – схема коррекции по направлению вертикали места
трехстепенного гироскопа (1 — жидкостный маятниковый датчик, 2 — коррекционный двигатель). При горизонтальном положении главной оси гироскопа, а следовательно, и датчика электрическое сопротивление между средним электродом 6 (см. рис. 3.16) и каждым из крайних электродов 3, 5 одинаково, и по управляющим обмоткам коррекционного двигателя протекают токи, равные по величине, но противоположные по направлению. В этом случае двигатель неподвижен и момента не создает. При отклонении главной оси гироскопа от плоскости горизонта воздушный пузырек смещается относительно электродов и изменяется площадь контактной поверхности электролита с электродами. Электрическое сопротивление цепей между центральным и крайними электродами изменяется. При этом большим становится сопротивление цепи того электрода, поверхность соприкосновения которого с жидкостью меньше. В результате по управляющим обмоткам коррекционного двигателя потекут разные по значению и направлению токи. Двигатель создаст момент относительно оси подвеса наружной рамы, и гироскоп начнет прецессировать относительн