Классическая термодинамика: три начала термодинамики. Понятие тепловой машины. Необратимость термодинамических процессов.
Великие основатели классической науки подчеркивали универсальность и вечный характер законов природы. Физика Ньютона претендовала на универсальность независимо от масштабов объектов. С точки зрения классической физики движение атомов, планет и небесных светил подчиняется единым законам. Поиск вечной истины, таящейся за изменчивыми явлениями природы, вызывал энтузиазм. Ученые пережили сильное потрясение, когда в ходе дальнейшего развития естествознания оказалось, что модели, изучаемые классической физикой, соответствуют лишь предельным, искусственно созданным ситуациям. Только искусственный процесс может быть детерминированным и обратимым. Все естественное непременно содержит элементы случайности и необратимости.
Первые признаки угрозы грандиозному построению великих классиков появились еще в начале 19 века. В это время впервые было дано описание явления, которое абсолютно немыслимо с точки зрения классической динамики, т.к. представляло собой необратимый процесс.
В 1811-м году французский математик и физик барон Жан-Батист Жозеф Фурье (1768-1830) сформулировал закон теплопроводности. Установленный Фурье результат был удивительно прост и изящен: поток тепла пропорционален градиенту температуры:
, (1)
где: – количество тепла, проходящего через некоторую поверхность S в единицу времени (количество энергии, передаваемой путем теплопередачи), единица измерения теплового потока Дж/с=Вт, – быстрота изменения температуры вдоль оси ОХ (проекция градиента температуры на ось ОХ, или, в частном случае – величина градиента температуры, если температура зависит только от х), – коэффициент теплопроводности, его размерность . Знак “–“ перед правой частью соотношения (1) указывает на то, что тепло распространяется в сторону уменьшения температуры.
Замечательно, что этот простой закон применим к веществу, в каком состоянии оно бы не находилось – твердом жидком или газообразном. Закон Фурье, если его применить к изолированному телу с неоднородным распределением температуры, описывает постепенное выравнивание температуры и установление равновесия – необратимый процесс.
Подобные явления описывались с помощью термодинамического метода. В термодинамическом методе макроскопический объект рассматривается как сплошная среда, не имеющая внутренней структуры. Вместо траектории – состояние. Состояние макросистемы характеризуется некоторым количеством величин – параметров. Эти величины характеризуют всю систему в целом, в разных точках среды могут иметь различные значения и изменяться с течением времени (неравновесное состояние).
Равновесным называется такое состояние, при котором в изолированной системе при отсутствии внешних воздействий все параметры системы приобретают постоянные значения.
В термодинамике вместо классического движения рассматривается переход из одного равновесного состояния в другое равновесное состояние.
Еще в 18 веке были экспериментально установлены количественные соотношения между параметрами, характеризующими состояние газа - давление, объем, температура, масса.
Промышленная революция, начавшаяся в Западной Европе в первой трети 19 века, активизировала развитие естественных наук и инженерного творчества, и сформировала символ той эпохи – энергетический резервуар. Наука о теплоте стала практически востребованной. При изучении закономерностей превращения теплоты в механическую работу в тепловых двигателях и возникла термодинамика. Пионерские исследования, заложившие основы термодинамики принадлежат французскому инженеру и физику Сади Карно (1796-1832), немецкому физику-теоретику Рудольфу Клаузиусу (1822-1888) и австрийскому физику-теоретику Людвигу Больцману (1844-1906). Первоначальная задача сводилась к исследованию условий, при которых превращение теплоты в работу является наиболее оптимальным. Именно такую цель преследовал французский инженер и физик Сади Карно (1796-1832). Первые положения термодинамики были изложены в его сочинении «О движущей силе огня и о машинах, способных развивать эту силу» (1824 г).
Термодинамика – это учение о связи и взаимопревращениях различных видов энергии, теплоты и работы.
В основе термодинамики лежат несколько фундаментальных законов (начал), которые являются обобщением экспериментальных данных.
Первое начало устанавливает количественные соотношения, имеющие место при превращениях энергии из одних видов в другие.
Первое начало термодинамики(закон сохранения энергии):
- количество тепла, сообщенное системе, идет на приращение внутренней энергии системы и на совершение работы над внешними телами ;
- невозможен вечный двигатель первого рода, т.е. такой периодически действующий двигатель, который совершал бы работу в большем количестве, чем получал извне энергию.
Второе начало определяет условия, при которых возможны эти превращения, то есть определяет возможные направления процессов.
Второе начало термодинамики:
- невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела, менее нагретого, к телу, более нагретому;
- невозможен вечный двигатель второго рода, т.е. такой периодически действующий двигатель, который получал бы тепло от одного резервуара и превращал это тепло полностью в работу.
Квантовая механика: Гипотеза Планка Объяснение фотоэффекта Эйнштейном и гипотеза корпускулярно-волнового дуализма. Волны де Бройля.
Квантовая механика
Представление о случайности как о фундаментальном свойстве природы послужило основой для возникновения квантовой физики, в которой потребовалось кардинально изменить исходные взгляды на устройство природы на микроуровне.
Рассмотрим некоторые экспериментально изученные явления, которые не могли быть объяснены с точки зрения классической физики. Период c 1900 по 1930 годы – это время «тридцатилетней войны» квантовой физики с классической.