Науки о сложных системах: синергетика
Тема 9
Науки о сложных системах: синергетика
I/ Сложные системы в химии
2/ Неравновесные системы
З/ Эволюция и ее особенности
4/ От термодинамики закрытых систем к синергетике
5/ Гипотеза рождения материи
Сложные системы в химии
На химию в XX веке возлагалось много надежд, вплоть до провозглашения в СССР лозунга: «Коммунизм — это советская власть плюс электрификация всей страны и химизация народного хозяйства».
Повышение урожайности сельскохозяйственных культур благодаря применению минеральных удобрений и ядохимикатов дало возможность говорить о «зеленой революции», но это же привело к загрязнению почв и самих производимых продуктов, так что в большей цене оказались продукты, выращенные «без химии».
В промышленности новые химические вещества дали возможность существенно обогатить производственный потенциал, но и это повлекло за собой отрицательные экологические последствия, так как большинство новых химических веществ не усваивалось природной средой и таким образом тоже становилось ее загрязнителями.
Химия нашла широкое применение в быту, в частности, в косметике (появилось выражение «сделать химию»), что также имело свою обратную экологическую сторону.
Но в данном разделе нас интересует то, как химия со своей стороны подошла к изучению сложных систем.
Выдающимся достижением химии явилось то, что она открыла так называемые цепные реакции еще до того, как в физике был обнаружен радиоактивный распад.
Суть цепной реакции Н. Н. Семенов описывает так: «Энергии кванта достаточно для того, чтобы двухатомная молекула хлора распалась на отдельные атомы. Каждый из них активнее первоначальной молекулы и потому легко вступает в реакцию с молекулой водорода. Она также двухатомна. Один из ее атомов вместе с атомом хлора дает молекулу продукта — хлористого водорода, а другой атом водорода остается свободен. Теперь он легко вступает в реакцию с ближайшей молекулой хлора, образуя вторую молекулу хлористого водорода и отдельный атом хлора... Это повторяется много-много раз, возникает как бы длинная цепь реакций» (И. Пригожин. Краткий миг торжества,- М., 1989.- С. 13).
Советскому ученому Н. Н. Семенову предстояло открытьразветвленные цепные реакции. «Я уже сейчас не помню хорошо, когда у меня мелькнула догадка, что реакция окисления фосфора отличается от реакции хлора с водородом... Не помню, как мне пришла в голову главная мысль, что в ходе этой реакции образуются не обычные молекулы пятиокиси фосфора, а молекулы возбужденные — имеющие избыточную энергию, что и является причиной испускания света присоединении фосфора с кислородом. Но иногда возбужденная молекула пятиокиси фосфора может столкнуться с неактивной молекулой кислорода, еще не успев испустить свет. Тогда эта избыточная энергия вызывает расщепление кислородной молекулы на активные атомы, каждый из которых, в свою очередь, начинает боден-штейновскую прямую цепь реакции окисления фосфорных паров» (Там же.-С. 13-14).
Теория разветвленных цепных реакций дала начало новому направлению исследований —- химической физике, дисциплине, промежуточной между физикой и химией.
Неравновесные системы
В химии были также открыты колебательные реакции, получившие название «химических часов». «Ведь, что, в самом деле, происходит? Основа колебательной реакции — наличие двух типов молекул, способных превращаться друг в друга. Назовем один из них А (красные молекулы), другой — В (синие). Мы привыкли думать, что химическая реакция — это хаотические, происходящие наобум столкновения частиц. По этой логике взаимные превращения А и В должны приводить к усредненному цвету раствора со случайными вспышками красного и синего. Но когда условия далеки от равновесных, происходит совершенно иное: раствор в целом становится красным, потом синим, потом снова красным. Получается, будто молекулы как бы устанавливают связь между собой на больших, макроскопических расстояниях через большие, макроскопические отрезки времени. Появляется нечто похожее на сигнал, по которому все А или все В реагируют разом... Такое поведение традиционно приписывалось только живому — теперь же ясно, что оно возможно и у систем сравнительно простых, неживых» (Там же.-С. 313-314).
Отличия неравновесной структуры от равновесной заключается в следующем:
1. Система реагирует на внешние условия (гравитационное поле и т. п.).
2. Поведение случайно и не зависит от начальных условий, но зависит от предыстории.
3. Приток энергии создает в системе порядок, и, стало быть, энтропия ее уменьшается.
4. Наличие бифуркации — переломной точки в развитии системы.
5. Когерентность: система ведет себя как единое целое и как если бы она была вместилищем дальнодействующих сил (такая гипотеза присутствует в физике). Несмотря на то, что силы молекулярного взаимодействия являются короткодействующими (действуют на расстояниях порядка 10-8 см), система структурируется так, как если бы каждая молекула была «информирована» о состоянии системы в целом.
Различают также области равновесности и неравновесности, в которых может пребывать система. Ее поведение при этом существенно меняется, что можно представить в таблице:
Эволюция и ее особенности
Понятие хаоса в противоположность понятию космоса было известно древним грекам.
Пригожин и Стенгерс называютхаотическими все системы, которые приводят к несводимому представлению в терминах вероятностей. Другими словами, такие системы нельзя описать однозначно детерминистично, т. е. зная состояние системы в данный момент, точно предсказать, что с ней будет в момент следующий.
«Экстраполяция динамического описания... имеет наглядный образ — демон, вымышленный Лапласом и обладающий способностью, восприняв в любой данный момент времени положение и скорость каждой частицы во Вселенной, прозревать ее эволюцию как в будущем, так и в прошлом... В контексте классической динамики детерминистическое описание может быть недостижимым напрактике, тем не менее, оно остаетсяпределом, к которому должна сходиться последовательность все более точных описаний» (И. Пригожин, И. Стенгерс. Порядок из хаоса.- М., 1986.- С. 124).
Хаотическое поведение непредсказуемо в принципе. Необратимость, вероятность и случайность становятся объективными свойствами хаотических систем на макроуровне, а не только на микроуровне, как было установлено в квантовой механике.
«Модели, рассмотрением которых занималась классическая физика, соответствуют, как мы сейчас понимаем, лишь предельным ситуациям. Их можно создать искусственно, поместив систему в ящик и подождав, пока она не придет в состояние равновесия. Искусственное может быть детерминированным и обратимым. Естественное же непременно содержит элементы случайности и необратимости... Материя — более не пассивная субстанция, описываемая в рамках механистической картины мира, ей также свойственна спонтанная активность»(Там же.- С. 50)
«Если устойчивые системы ассоциируются с понятием детер-министичного, симметричного времени, то неустойчивые хаотические системы ассоциируются с понятием вероятностного времени, подразумевающего нарушение симметрии между прошлым и будущим» (И. Пригожин, И. Стенгерс. Время, хаос, квант.- М., 1994.-С. 255-256), т. е. «стрелу времени».
«Будущее при нашем подходе перестает быть данным; оно не заложено более в настоящем. Это означает конец классического идеала всеведения. Мир процессов, в котором мы живем и который является частью нас, не может более отвергаться как видимость или иллюзия, определяемая нашим ограниченным способом наблюдения. На заре западного мира Аристотель ввел фундаментальное различие между божественным и вечным небесным миром и изменяющимся и непредсказуемым подлунным миром, к которому принадлежит и наша Земля. В определенном смысле классическая наука была низведением на Землю аристотелевского описания небес. Преобразование, свидетелями которого мы являемся сегодня, можно рассматривать как обращение аристотелевского хода; ныне мы возвращаемся с Земли на небо» (Там же.- С. 20).
Эволюция должна удовлетворять трем требованиям:
1) необратимость, выражающаяся в нарушении симметрии между прошлым и будущим;
2) необходимость введения понятия «событие»;
3) некоторые события должны обладать способностью изменять ход эволюции.
Условия формирования новых структур:
1) открытость системы;
2) ее нахождение вдали от равновесия;
3) наличие флуктуации.
Чем сложнее система, тем более многочисленны типы флуктуации, угрожающих ее устойчивости. Но в сложных системах существуют связи между различными частями. От исхода конкуренции между устойчивостью, обеспечивающейся связью, и неустойчивостью из-за флуктуации, зависит порог устойчивости системы.
Превзойдя этот порог, система попадает в критическое состояние, называемоеточкой бифуркации. В ней система становится неустойчивой относительно флуктуации и может перейти к новой области устойчивости, т. е. к образованию нового вещества. Система как бы колеблется перед выбором одного из нескольких путей эволюции. Небольшая флуктуация может послужить в этой точке началом эволюции в совершенно новом направлении, который резко изменит все ее поведение. Это и есть событие.
В точке бифуркации случайность подталкивает то, что остается от системы, на новый путь развития, а после того, как один из многих возможных вариантов выбран, вновь вступает в силу детерминизм — и так до следующей точки бифуркации. В судьбе системы случайность и необходимость взаимно дополняют друг друга.
По мнению Пригожина и Стенгерса, большинство систем открыты — они обмениваются энергией или веществом или информацией с окружающей средой.
Главенствующую роль в окружающем мире играют не порядок, стабильность и равновесие, а неустойчивость и неравновесность, т. е. все системы непрестанно флуктуируют.
В особой точки бифуркации флуктуация достигает такой силы, что организация системы не выдерживает и разрушается, и принципиально невозможно предсказать: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и высокий уровень упорядоченности, который они назвали диссипа-тивной структурой.
Новые структуры называются диссипативными, потому что дляих поддержания требуется больше энергии, чем для поддержания более простых структур, на смену которым они приходят.
Диссипативные структуры существуют лишь постольку, поскольку система диссипирует (рассеивает) энергию и, следовательно, производит энтропию.
Из энергии возникает порядок с увеличением общей энтропии. Таким образом, энтропия — не просто безостановочное соскальзывание системы к состоянию, лишенному какой бы то ни было организации (как думали сторонники «тепловой смерти» Вселенной), а при определенных условиях становится прародительницей порядка.
С одними и теми же граничными условиями оказываются совместимыми множество различных диссипативных структур. Это — следствие нелинейного характера сильно неравновесных ситуаций.
Малые различия могут привести к крупномасштабным последствиям. Следовательно, граничные условиянеобходимы, но не достаточны для объяснения причин возникновения структуры.
Необходимо также учитывать реальные процессы, приводящие к «выбору» одной из возможных структур. Именно поэтому (а также в силу некоторых других причин) мы и приписываем таким системам определенную «автономию», или «самоорганизацию».
Исследования, о которых только что говорилось, проводятся в рамках науки, получившей название синергетики.
Гипотеза рождения материи
Новая наука, которая сначала называлась термодинамикой открытыхсистем, а затем получила название синергетика, изменила представление о мире.
Мы говорили о моделях Вселенной и могли понимать, что Вселенная появилась после того, как некое существо нажало на кнопку.
Физика XX века сначала изменила отношение к тому, что считать материей и как она соотносится с пространством и временем, а в конце XX века по-новому взглянула на процесс развития.
Развитие понимается в синергетике как процесс становления качественно нового, того, что еще не существовало в природе и предсказать которое невозможно.
На пороге XXI века наука подошла к тому, чем всегда занималась мифология — к вопросу о происхождении мира и материи.
Кибернетика решает проблему рождения разума, синергетика — проблему рождения материи.
Механизм, который ею предлагается, — это спонтанная флуктуация, событие в точке бифуркации, экспоненциальный процесс до определенного момента.
Дуализм ньютоновской Вселенной (с одной стороны, пространство-время, с другой — материя) сменился эквивалентностью пространства-времени и материи в уравнениях Эйнштейна.
«Предлагаемая нами модификация уравнений Эйнштейна, учитывающая рождение материи, выражает «неэквивалентность» материи и пространства-времени. В нашем варианте уравнения Эйнштейна устанавливают взаимосвязь не только между пространством-временем и материей, но и энтропией. Вводимый нами космологический механизм приводит к необратимому «разделению фаз» между материей и гравитацией. В первоначальном вакууме они смешаны, в существующей ныне Вселенной мы наблюдаем материю, переносчик гравитации, «плавающей» в пространстве-времени. Фундаментальная двойственность нашей Вселенной представляется нам сегодня результатом первичного всплеска энтропии» (И. Пригожин, И. Стенгерс. Время, хаос, квант...- С. 238).
Причиной всплеска энтропии может быть распад чего-то высокоорганизованного, что заставляет вспомнить стоиков, Плотина и «Веды».
Основным понятием предстает понятие неустойчивости. Если что-то есть, то устойчивость невозможна. Возникает спонтанная флуктуация.
Так из хаоса (неустойчивости) рождается космос. При спонтанной флуктуации поля начинается самопроизвольный процесс порождения частиц вплоть до какого-то момента, когда он прекращается. Частицы порождаются энергией по модели, сформулированной в синергетике.
Первые частицы, которые появились, были нестабильными элементарными частицами без массы покоя и с кратчайшим временем существования.
Затем они превратились в стабильные, существующие поныне. Нестабильные частицы Пригожин отождествляет с черными мини-дырами, которые распадаются на обычную материю и излучение.
«Существует некоторая аналогия с переохлажденной жидкостью и пороге перехода в кристаллическое состояние. Мы можем наблюдать в переохлажденной жидкости флуктуации, приводящие к образованию крохотных кристаллов, которые то появляются, то снова растворяются. Но если образуется крупный кристалл, то происходит необратимое событие: кристаллизация всей жидкости... Аналогично, очень малая вероятность критической функции в вакууме Минковского указывает на то, что стрела времени уже существует в нем в латентной, потенциальной форме, но проявляется, только когда неустойчивость приводит к рождению Вселенной. В этом смысле время предшествует существованию Вселенной» (там же, с. 238).
В модели Пригожина имеет место производство энтропии, пропорциональное скорости рождения частиц. И преобразование пространства-времени производит энтропию. Причем сначала возникает пространство-время, а затем оно производит частицы, поскольку процесс производства пространства-времени из материи невозможен. Итак, последовательность рождения материи из вакуума:
спонтанная флуктуация ® точка бифуркации ® черные мини-дыры ® пространство-время ® частицы.
Квантовый вакуум отличается от ничто тем, что имеет универсальные постоянные, которые могут служить аналогом всеединства. Тут вспоминаются и Абсолютная Идея Гегеля, и «мир идей», и «пустота» буддистов. Философских аналогов очень много.
Модель рождения материи Пригожина принадлежит к классу неустойчивых вероятностных систем. Конец рождения материи связан с временем жизни черных мини-дыр. Высшая цель данной «игрушечной модели» — построение «дарвиновской теории» элементарных частиц.
Какова судьба Вселенной, исходя из данной гипотезы? «Стандартная модель предсказывает, что в конце концов наша Вселенная обречена на смерть либо в результате непрерывного расширения (тепловая смерть), либо в результате последующего сжатия («страшный треск»). Для Вселенной, родившейся под знаком неустойчивости из вакуума Минковского, это уже не так. Ничто не мешает нам предположить возможность повторных неустойчивостей» (Там же.- С. 244-245). Размеры Вселенной растут в модели Пригожина по экспоненте как следствие неустойчивости вакуума. В результате расширения Вселенной при нерождении материи Вселенная приближается к первоначальному состоянию вакуума. Потом возможна новая флуктуация.
«Эйнштейновская космология стала венцом достижений классического подхода к познаваемости... В стандартной модели материя задана: она эволюционирует только в соответствии с фазами расширения Вселенной. Но, как мы видели, неустойчивость возникает, стоит нам только учесть проблему рождения материи. Таким образом, особая точка Большого Взрыва заменяется рождением материи и кривизны пространства-времени. Эйнштейновское пространство-время, соответствующее искривленной Вселенной, при нашем подходе возникает как следствие необратимых процессов. Стрела времени становится принципиально важным элементом, лежащим в основе самих определений материи и пространства-времени. Однако наша модель не соответствует рождению стрелы времени из «ничего». Космологическая стрела времени уже предполагается неустойчивостью квантового вакуума» (Там же.- С. 257-258).
Наконец, еще один вопрос: можно ли создать единую теорию физики, или, как ее называют еще, «теорию всего». «Если такая универсальная теория когда-нибудь будет сформулирована, она должна будет включать в себя динамическую неустойчивость и таким образом учитывать нарушение симметрии во времени, необратимость и вероятность. И тогда надежду на построение такой «теории всего», из которой можно было бы вывести полное описание физической реальности, придется оставить» (там же, с. 245). Другими словами, нет знания, которое овладело бы универсальным ключом ко всем без исключения явлениям природы.
КИБЕРНЕТИКА И СИНЕРГЕТИКА
(Темы 8 и 9)
ВОПРОСЫ
1. Какие системы называются простыми, а какие сложными?
2. Что изучает кибернетика?
3. Каково значение информации, слова?
4. Что такое положительная и отрицательная обратная связь?
5. Что такое функциональный подход и чем он отличается от вещественного и структурного?
6. Что такое «черный ящик» в кибернетике?
7. Каковы результаты исследований «моделей мира»?
8. Что такое цепные реакции?
9. Какие состояния называются равновесными и неравновесными?
10. Что изучает синергетика?
11. Чем отличаются закрытые системы от открытых?
12. Каково значение энергии, света?
13. Как соотносятся энергия и энтропия, информация и энтропия?
14. Каков механизм эволюции в соответствии с представлениями синергетики?
15. Что говорит модель Пригожина о рождении материи?
16. Почему нельзя создать «теорию всего»?
Литература.
1. Винер Н. Кибернетика. — М., 1968.
2. Винер Н. Я — математик. — М., 1967.
3. Краткий миг творчества. — М., 1989.
4. Медоуз Д. и Др. Пределы роста. — М., 1991.
5. Пригожий И., Стенгерс И. Время, хаос, квант. — М., 1994.
6. Пригожий И., Стенгерс И. Порядок из хаоса. — М., 1986.
7. Эшби У.Р. Введение в кибернетику. — М., 1959.
Практикум к семинару
I. Ответьте на вопросы.
1. Как соотносятся законы сохранения и законы эволюции?
2. Чем простая система отличается от сложной?
1. Как соотносятся законы сохранения и законы эволюции?
2. Чем простая система отличается от сложной?
3. Чем устойчивая система отличается от неустойчивой?
4. Что такое парадокс времени и космологический парадокс?
5. Что такое стрела времени?
6. Что такое точка бифуркации?
7. Каково значение универсальной синергетической схемы развития?
8. В чем сходство и отличия эволюции неживых и живых тел?
9. Где и как образуются и превращаются друг в друга химические элементы?
10. Чем отличается химический элемент от элементарной частицы?
11. Какова роль вероятностных методов в классической термодинамике, квантовой механике, синергетике? Какова роль случайности?
12. Какова роль времени в теории относительности и синергетике?
13. Может ли машина мыслить?
14. Каково донаучное, научное и теологическое понимание целесообразности?
15.Есть ли цель у камня, животного, компьютера, человека, эволюции?
16. В чем разница между теологией и телеологией?
17. В чем разница между целесообразной деятельностью человека и животных?
18.В чем критерий целесообразности с научной точки зрения?
19. Каково соотношение закона развития и целесообразности?
20.Что представляют собой целесообразные системы?
21. Солнце всходит и заходит целесообразно?
22. Каково сходство и различие между созданными моделями мира?
23.Что такое объективная и субъективная информация?
24. Что такое прямая и обратная связь?
25. Что такое положительная и отрицательная обратная связь?
26. Что такое гомеостат, черный ящик, функция и функциональный подход?
27. Что такое организация и самоорганизация?
28. Что такое Интернет?
29. Почему будущее общество предлагают назвать информационным?
II. Прокомментируйте высказывания.
«Нельзя не отметить принципиальное концептуальное различие между физикой и химией. В классической физике мы можем представлять себе обратимые процессы, такие, как движения маятника без трения. Пренебрежение необратимыми процессами в динамике всегда соответствует идеализации, но по крайней мере в некоторых случаях эта идеализация разумна. В химии все обстоит совершенно иначе. Процессы, изучением которых она занимается (химические превращения, характеризуемые скоростями реакций), необратимы. По этой причине химию невозможно свести к лежащей в основе классической или квантовой механики идеализации, в которой прошлое и будущее играют эквивалентные роли» (И. Пригожин, И. Стенгерс).
«По свидетельству Мишеля Серра, древние атомисты уделяли турбулентному течению столь большое внимание, что турбулентность с полным основанием можно считать основным источником вдохновения физики Лукреция. Иногда, писал Лукреций, в самое неопределенное время и в самых неожиданных местах вечное и всеобщее падение атомов испытывает слабое отклонение — "клинамен". Возникающий вихрь дает начало миру, всем вещам в природе. "Клинамен", спонтанное непредсказуемое отклонение, нередко подвергали критике как одно из наиболее уязвимых мест в физике Лукреция, как нечто, введенное ad hoc. В действительности же верно обратное: "клинамен" представляет собой попытку объяснить такие явления, как потеря устойчивости ламинарным течением и его спонтанный переход в турбулентное течение. Современные специалисты по гидродинамике проверяют устойчивость течения жидкости, вводя возмущение, выражающее влияние молекулярного хаоса, который накладывается на среднее течение. Не так уж далеко мы ушли от "клинамена" Лукреция!» (И. Пригожий, И. Стенгерс).
Создание
Существующая Флуктуация Потеря устойчивости Точка бифуркации диссипативной
Система системы
Новое стационарное Распад системы
состояние
Новая система
Тема 9
Науки о сложных системах: синергетика
I/ Сложные системы в химии
2/ Неравновесные системы
З/ Эволюция и ее особенности
4/ От термодинамики закрытых систем к синергетике
5/ Гипотеза рождения материи
Сложные системы в химии
На химию в XX веке возлагалось много надежд, вплоть до провозглашения в СССР лозунга: «Коммунизм — это советская власть плюс электрификация всей страны и химизация народного хозяйства».
Повышение урожайности сельскохозяйственных культур благодаря применению минеральных удобрений и ядохимикатов дало возможность говорить о «зеленой революции», но это же привело к загрязнению почв и самих производимых продуктов, так что в большей цене оказались продукты, выращенные «без химии».
В промышленности новые химические вещества дали возможность существенно обогатить производственный потенциал, но и это повлекло за собой отрицательные экологические последствия, так как большинство новых химических веществ не усваивалось природной средой и таким образом тоже становилось ее загрязнителями.
Химия нашла широкое применение в быту, в частности, в косметике (появилось выражение «сделать химию»), что также имело свою обратную экологическую сторону.
Но в данном разделе нас интересует то, как химия со своей стороны подошла к изучению сложных систем.
Выдающимся достижением химии явилось то, что она открыла так называемые цепные реакции еще до того, как в физике был обнаружен радиоактивный распад.
Суть цепной реакции Н. Н. Семенов описывает так: «Энергии кванта достаточно для того, чтобы двухатомная молекула хлора распалась на отдельные атомы. Каждый из них активнее первоначальной молекулы и потому легко вступает в реакцию с молекулой водорода. Она также двухатомна. Один из ее атомов вместе с атомом хлора дает молекулу продукта — хлористого водорода, а другой атом водорода остается свободен. Теперь он легко вступает в реакцию с ближайшей молекулой хлора, образуя вторую молекулу хлористого водорода и отдельный атом хлора... Это повторяется много-много раз, возникает как бы длинная цепь реакций» (И. Пригожин. Краткий миг торжества,- М., 1989.- С. 13).
Советскому ученому Н. Н. Семенову предстояло открытьразветвленные цепные реакции. «Я уже сейчас не помню хорошо, когда у меня мелькнула догадка, что реакция окисления фосфора отличается от реакции хлора с водородом... Не помню, как мне пришла в голову главная мысль, что в ходе этой реакции образуются не обычные молекулы пятиокиси фосфора, а молекулы возбужденные — имеющие избыточную энергию, что и является причиной испускания света присоединении фосфора с кислородом. Но иногда возбужденная молекула пятиокиси фосфора может столкнуться с неактивной молекулой кислорода, еще не успев испустить свет. Тогда эта избыточная энергия вызывает расщепление кислородной молекулы на активные атомы, каждый из которых, в свою очередь, начинает боден-штейновскую прямую цепь реакции окисления фосфорных паров» (Там же.-С. 13-14).
Теория разветвленных цепных реакций дала начало новому направлению исследований —- химической физике, дисциплине, промежуточной между физикой и химией.
Неравновесные системы
В химии были также открыты колебательные реакции, получившие название «химических часов». «Ведь, что, в самом деле, происходит? Основа колебательной реакции — наличие двух типов молекул, способных превращаться друг в друга. Назовем один из них А (красные молекулы), другой — В (синие). Мы привыкли думать, что химическая реакция — это хаотические, происходящие наобум столкновения частиц. По этой логике взаимные превращения А и В должны приводить к усредненному цвету раствора со случайными вспышками красного и синего. Но когда условия далеки от равновесных, происходит совершенно иное: раствор в целом становится красным, потом синим, потом снова красным. Получается, будто молекулы как бы устанавливают связь между собой на больших, макроскопических расстояниях через большие, макроскопические отрезки времени. Появляется нечто похожее на сигнал, по которому все А или все В реагируют разом... Такое поведение традиционно приписывалось только живому — теперь же ясно, что оно возможно и у систем сравнительно простых, неживых» (Там же.-С. 313-314).
Отличия неравновесной структуры от равновесной заключается в следующем:
1. Система реагирует на внешние условия (гравитационное поле и т. п.).
2. Поведение случайно и не зависит от начальных условий, но зависит от предыстории.
3. Приток энергии создает в системе порядок, и, стало быть, энтропия ее уменьшается.
4. Наличие бифуркации — переломной точки в развитии системы.
5. Когерентность: система ведет себя как единое целое и как если бы она была вместилищем дальнодействующих сил (такая гипотеза присутствует в физике). Несмотря на то, что силы молекулярного взаимодействия являются короткодействующими (действуют на расстояниях порядка 10-8 см), система структурируется так, как если бы каждая молекула была «информирована» о состоянии системы в целом.
Различают также области равновесности и неравновесности, в которых может пребывать система. Ее поведение при этом существенно меняется, что можно представить в таблице: