Тактико - техническое обоснование проекта
Введение
Развитие орудий полевой артиллерии за рубежом до последних лет шло по пути создания самоходных установок с легкой броневой защитой от пуль и осколков. Считалось, что эти орудия обладают преимуществами перед буксируемыми вследствие повышенной живучести в условиях применения оружия массового поражения, а также повышенной маневренности и возможности самостоятельно преодолевать водные преграды. Однако признание большинством военных специалистов возможности ведения боевых действий только обычными средствами побудило к продолжению работ над совершенствованием и созданием новых образцов буксируемых орудий полевой артиллерии и боеприпасов к ним. При этом можно заметить новые тенденции в конструктивном решении образцов, направленные на увеличение дальности стрельбы, скорострельности, маневренности орудий и могущества снарядов.
Наиболее распространенным способом повышения дальности стрельбы артиллерийских орудий в последнее время является применение активно-реактивных снарядов. Использование более мощных зарядов также позволяет увеличить дальность стрельбы, но при этом необходимо удлинять ствол и увеличивать толщину его стенок. Для сохранения допустимых размеров ствол можно изготовлять из более прочных материалов, скреплять посредством многослойных конструкций и различных термических и деформационных обработок. Применение более эффективных дульных тормозов уменьшит энергию откатных частей орудия при выстреле.
Скорострельность артиллерийских орудий может быть повышена введением автоматического заряжания, вращающихся камор, зарядных лотков и вращающихся магазинов к орудиям с двухкамерными казенниками. Применение противооткатных устройств с обратным откатным циклом сокращает время отката и увеличивает скорострельность. При этом следует отметить, что
наиболее перспективным в армиях капиталистических стран считается создание орудий с обратным откатным циклом. Такая конструкция противооткатных устройств позволяет снизить энергию отката, что, в свою очередь, дает возможность значительно уменьшить массу орудия.
При этом создается возможность разработки орудий без задних станин, что обеспечивает удобство работы расчета при орудии. Кроме того, может быть значительно упрощена конструкция тормоза отката и снижен класс точности обработки его основных деталей.
Отдавая должное конструкции орудия с обратным откатным циклом, следует сказать, что идея этой конструкции не нова и среди российских специалистов по проектированию артиллерийских орудий давно известна под названием «системы с выкатом».
Повышение могущества орудия при сохранении его габаритно-массовых характеристик требует разработки новых противооткатных устройств, соответствующих возросшим нагрузкам.
Одной из задач, возникающих при проектировании ПОУ, является снижение сил, действующих во время выстрела на лафет со стороны откатных частей. Как правило, это достигается применением эффективных дульных тормозов, а также путем оптимизации параметров ПОУ.
Рассмотрение вопросов, связанных с поиском путей совершенствования конструкций противооткатных устройств, отвечающих функциональным требованиям, при ограничении габаритно-массовых характеристик, и составляет содержание данной работы.
Заключение
Вопрос создания противооткатных устройств и их эксплуатации является многоплановым, конструктивных решений может быть бесчисленное множество.
Процесс проектирования противооткатных устройств состоит из ряда последовательно решаемых взаимообусловленных задач и включает этапы, общие для проектирования любого технического устройства. Объединенные вместе, эти этапы представляют алгоритм обобщенного проектирования, реализация которого в значительной мере способствует выполнению технического задания.
1. Формирование полного перечня требований, предъявляемых к разрабатываемому устройству с учетом его места в общей структуре орудия; выделение тех требований, которые в основном определяют специфику его функционирования.
Для ПОУ — это набор функциональных, общетехнических и конструктивных требований. Сюда могут добавляться специфичные требования, характерные лишь для данного проекта. Например, для струйного тормоза может быть обусловлено требование минимального расхода жидкости.
2. Формирование полного перечня физических законов, использование которых обеспечивает реализацию определяющих требований к устройству, обоснование достаточного минимума этих законов и структуры их использования.
Для ПОУ, как правило, представляющих собой механические системы, таковыми являются общие законы механики — сохранения энергии, импульса, массы.
3. Обоснование технического решения устройства, обеспечивающего реализацию необходимых физических законов (процессов), их взаимообусловленность и выполнение комплекса определяющих требований.
Для ПОУ (как и для любого устройства) — это либо выбор имеющейся, либо изобретение новой конструкции. Следует иметь в виду, что требуемую конструкцию легче придумать (изобрести), чем приспосабливать под новые требования старые конструкции.
Сказанные этапы составляют наиболее трудную в плане формализации часть обобщенного алгоритма — творческую часть.
4. Выбор метода формализации процессов функционирования устройства и формирование на его основе математической модели.
Для ПОУ, например, для гидравлических тормозов — это аналитические зависимости, описывающие течение жидкости в каналах с учетом ее кинематических и физических параметров, геометрических параметров тормоза.
5. Формализация определяющих требований в виде совокупности частных критериев качества и выбор формы записи обобщенного (интегрального) критерия качества проекта.
Для ПОУ — это, например, минимум массы, объема, максимум (минимум) энергоемкости и т. д. Смысл формализации заключается в переводе качественных критериев (требований) в количественные показатели (критерии).
6. Выбор формы реализации математической модели и ее реализация:
- по виду решения (аналитическое, численное дифференцирование, интегрирование, разложение в ряды, по конечным разностям, по
фундаментальным функциям и т. д.);
- по степени автоматизации вычислений.
В конкретных решениях используется, как правило, комбинация способов решения и степеней автоматизации, а также их дублирование с целью контроля достоверности получаемых результатов.
7. Выбор формы представления и представление результатов работы.
8. Оценка результатов работы.
Последовательность реализации этапов в принципе может меняться, каждый из этапов может неоднократно повторяться.
Исходя из выше сказанного, можно определить следующие пути совершенствования противооткатных устройств:
- разработка и применение комбинированных нераздельных ПОУ;
- проектирование устройств для стабилизации гидравлического сопротивления потоку жидкости в канавочных (веретенных) гидротормозах при изменении температуры жидкости;
- применение дополнительных регулирующих устройств в клапанных тормозах отката (наката) и использование пневмобуферов наката, встроенных в цилиндры ПОУ;
- проектирование орудий с выкатом
Введение
Развитие орудий полевой артиллерии за рубежом до последних лет шло по пути создания самоходных установок с легкой броневой защитой от пуль и осколков. Считалось, что эти орудия обладают преимуществами перед буксируемыми вследствие повышенной живучести в условиях применения оружия массового поражения, а также повышенной маневренности и возможности самостоятельно преодолевать водные преграды. Однако признание большинством военных специалистов возможности ведения боевых действий только обычными средствами побудило к продолжению работ над совершенствованием и созданием новых образцов буксируемых орудий полевой артиллерии и боеприпасов к ним. При этом можно заметить новые тенденции в конструктивном решении образцов, направленные на увеличение дальности стрельбы, скорострельности, маневренности орудий и могущества снарядов.
Наиболее распространенным способом повышения дальности стрельбы артиллерийских орудий в последнее время является применение активно-реактивных снарядов. Использование более мощных зарядов также позволяет увеличить дальность стрельбы, но при этом необходимо удлинять ствол и увеличивать толщину его стенок. Для сохранения допустимых размеров ствол можно изготовлять из более прочных материалов, скреплять посредством многослойных конструкций и различных термических и деформационных обработок. Применение более эффективных дульных тормозов уменьшит энергию откатных частей орудия при выстреле.
Скорострельность артиллерийских орудий может быть повышена введением автоматического заряжания, вращающихся камор, зарядных лотков и вращающихся магазинов к орудиям с двухкамерными казенниками. Применение противооткатных устройств с обратным откатным циклом сокращает время отката и увеличивает скорострельность. При этом следует отметить, что
наиболее перспективным в армиях капиталистических стран считается создание орудий с обратным откатным циклом. Такая конструкция противооткатных устройств позволяет снизить энергию отката, что, в свою очередь, дает возможность значительно уменьшить массу орудия.
При этом создается возможность разработки орудий без задних станин, что обеспечивает удобство работы расчета при орудии. Кроме того, может быть значительно упрощена конструкция тормоза отката и снижен класс точности обработки его основных деталей.
Отдавая должное конструкции орудия с обратным откатным циклом, следует сказать, что идея этой конструкции не нова и среди российских специалистов по проектированию артиллерийских орудий давно известна под названием «системы с выкатом».
Повышение могущества орудия при сохранении его габаритно-массовых характеристик требует разработки новых противооткатных устройств, соответствующих возросшим нагрузкам.
Одной из задач, возникающих при проектировании ПОУ, является снижение сил, действующих во время выстрела на лафет со стороны откатных частей. Как правило, это достигается применением эффективных дульных тормозов, а также путем оптимизации параметров ПОУ.
Рассмотрение вопросов, связанных с поиском путей совершенствования конструкций противооткатных устройств, отвечающих функциональным требованиям, при ограничении габаритно-массовых характеристик, и составляет содержание данной работы.
Тактико - техническое обоснование проекта
Рассмотрение действия выстрела на артиллерийское орудие позволяет нам:
— установить связи между массово-габаритными параметрами орудия и силовыми воздействиями, определяющими характер взаимного перемещения его составных частей;
— определить на этой основе необходимые законы движения составных частей орудия, удовлетворяющие комплексу противоречивых требований, предъявляемых к нему.
Практически реализовать необходимые законы движения элементов орудия позволяют устройства, составляющие одну из его составных частей и называемые противооткатными устройствами (ПОУ).
В общем случае к ПОУ, как и к любому техническому устройству, предъявляются три группы требований:
1) функциональные, определяющие функциональное предназначение и являющиеся основными, отличающими данное устройство от другого;
2) общетехнические, определяющие процесс отражения человеческого бытия в конкретном направлении техники — научные и производственные возможности общества;
3) конструктивные, являющиеся показателем объективной или субъективной ограниченности человеческого разума, отражающие степень разумности принимаемого решения.
Требования — мера безусловной необходимости, возможности и разумности принимаемого проектного решения.
Определим комплекс необходимых функциональных требований, которым должны удовлетворять ПОУ как часть орудия. С этой целью используем элементы системного подхода.
Системный подход — это рассмотрение явлений и процессов в их взаимосвязи и взаимообусловленности, предполагающее выявление, установление и анализ связей между элементами системы, формы связей и их направленности.
Для механических систем, к которым принадлежит и артиллерийское орудие, можно выделить четыре формы связи ( рисунок 1.1):
— стационарная, определяющая взаимосопряженность деталей устройства;
— функциональная, определяющая кинематику взаимодействия элементов устройства;
— энергетическая, определяющая энергообмен между деталями устройства;
— информационная, определяющая режим ограничений, целеуказаний.
Первые три вида связей характерны, прежде всего, для основных элементов системы, определяющих ее функционирование. Четвертый вид связи относится к взаимообусловленности основных и вспомогательных деталей системы и представлен, как правило, различными предохранительными механизмами.
Кроме того, эти связи могут быть одно- и двухсторонними. Указанные связи достаточно самостоятельны, но вместе с тем взаимообусловлены.
Рисунок 1.1 - Взаимообусловленность связей
Анализ связей ПОУ дает следующее.
1. Силовое воздействие одного элемента системы на другой можно уменьшить, если ввести между ними упругую связь (использовать закон сохранения импульса). ПОУ является упругой связью между стволом и лафетом. Следовательно, одна часть ПОУ должна быть соединена со стволом, а другая - с лафетом.
2. Так как ствол перемещается по лафету, то упругая связь должна осуществляться на всем диапазоне его перемещения.
3. Для обеспечения устойчивости всего орудия при откате и накате законы его движения должны быть строго определенными. Так как движение осуществляется под действием сил, а движущей силой в орудии является приведенная сила давления пороховых газов, характер изменения которой не согласуется с желаемым для обеспечения устойчивости, то необходимый закон движения будет обеспечен, если упругая связь будет управлять этим движением. Таким образом, упругая связь должна вырабатывать регулирую
щую движение силу — преобразовывать имеющуюся форму импульса силы давления пороховых газов в желаемую по условиям устойчивости форму импульса силы отдачи.
4. Так как длина отката — величина конечная, то приобретенная откатными частями энергия должна быть преобразована в другие виды:
— упругопластической деформации элементов орудия и
грунта;
— потенциальную аккумуляторов энергии;
— кинетическую маховиков, механизмов затвора, струи жидкости;
— электромагнитную;
— тепловую.
В конечном итоге происходит преобразование всех видов энергии в тепловую.
5. Так как откатные части после отката следует вернуть в исходное положение, на что необходимо затратить определенное количество энергии, то во время отката целесообразно эту часть энергии аккумулировать за счет, например:
— упругой деформации рабочего тела (сжатие или растяжение пружины, сжатие газа, скручивание торсиона и т. п.);
— вакуумирования рабочей полости аккумулятора;
— накопления электроэнергии и т. д.
6. Для предотвращения самопроизвольного перемещения по лафету ствола при придании ему углов возвышения следует создать в упругой связи соответствующее удерживающее усилие.
Таким образом, ПОУ должны отвечать следующим функциональным требованиям:
1) создавать предварительное усилие, удерживающее ствол в исходном до выстрела положении на всех углах возвышения, допускаемых орудием;
2) обеспечивать надежную упругую связь между лафетом и стволом на всем пути его движения;
3) преобразовывать кинетическую энергию откатных частей в какие-либо другие виды энергии;
4) обеспечивать преобразование формы импульса силы давления пороховых газов в необходимую форму импульса силы отдачи.
Исходя из функциональных требований, можно дать следующее определение, ПОУ - это техническое устройство, обеспечивающее упругую связь между стволом и лафетом, уменьшающее действие пороховых газов на лафет за счет преобразования формы импульса их силового воздействия, преобразующее кинетическую энергию откатных частей в тепловую и управляющее движением откатных частей с целью обеспечения устойчивости орудия при выстреле.
Такое определение ПОУ не затрагивает конкретные технические их реализации и обеспечивает проектировщику свободу выбора как физических принципов действия, на основе которых построена конструкция, так и ее непосредственного решения.
Под общетехническими требованиями следует понимать:
— технологичность;
— точность изготовления;
— простоту устройства;
— надежность в эксплуатации и т. д.
Под конструктивными следует понимать требования, обусловленные выбором той или иной конструкции ПОУ. Например, если в ПОУ используется жидкость, то следует предъявить дополнительно требования, обусловленные ее наличием:
— надежность уплотнений;
— отсутствие коррозии материалов ПОУ;
— механическая прочность жидкости;
— химическая стойкость жидкости;
— пониженное пенообразование и т. д.
В заключение следует подчеркнуть, что наличие на орудии ПОУ — лишь часть комплекса мер по уменьшению силового воздействия пороховых газов на орудие и повышению его устойчивости при выстреле.