Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния

Основные идеи, принципы и законы квантово-полевой картины мира в определённой степени отражены в предыдущей лекции №3 (см. схему 20).

Мы их концептуальную основу отразим на основе выделения основополагающих концепций и методологических принципов квантовой механики (см. схему 31).

Схема 31. Основополагающие концепции и методологические принципы квантовой механики.

v Концепция корпускулярно-волнового дуализма: «Каждый элемент материи имеет свойства волны и частицы».
v Концепция дискретности материи: «Всё: материя, энергия, квантовые характеристики выступают дискретными величинами, и нельзя измерить ни одну из них, не изменив её».
v Концепция вероятностного подхода: «Квантовая механика отказывается от стремления к точным предсказаниям того, что произойдёт при опредеоённых условиях. Мало того, это считается невозможным – единственное, что можно предсказать - это вероятность тех или иных событий. Так, что в квантовой механике мы должны удовлетвориться расчётом вероятностей, при этом считать, что такова природа на самом деле».
v Принцип неопределённости: Принцип неопределённости в квантовой механике задаётся соотношениями неопределённостей В. Гейзенберга: Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru и Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru . и находит отражение в принципе дополнительности Н. Бора.
v Принцип дополнительности: «Получение экспериментальной информации об одних физических величинах, описывающих состояние микрообъекта, неизбежно приводит к потере информации о других физических величинах, дополнительных к первым». В общенаучном плане принцип дополнительности можно сформулировать следующим образом: «Всякое истинное глубокое явление природы не может быть однозначно определено с помощью слов нашего языка и требует для своего определения по крайней мере двух взаимоисключающих дополнительных понятий».
v Принцип соответствия: «Любая новая более общая теория, являющаяся развитием предыдущих классических теорий, справедливость которых была экспериментально установлена для определенных групп явлений, не отвергает эти классические теории, а включает их в себя. В определенных случаях существует возможность предельного перехода новой теории в старую».
v Принцип простоты. «Более простая теория обычно имеет «внешнее оправдание» (соответствие эксперименту, т.е. свою верификацию) и «внутреннее совершенство» (красоту теории в виде ограничений на возможные качества систем), более «фальсифицируема и в то же время более информативна.».


Квантовое микросостояние одной микрочастицы включает в себя как характеристики частиц, так и ее окружения. Состояние микрочастицы задается волновой функцией (амплитудой вероятности состояния) Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru , которая является комплексной величиной, определяемой во всех точках пространства и в каждый момент времени. Движение частицы носит стохастический характер и в волновой механике уравнением движения является уравнение Шредингера, которое в общем случае имеет следующий вид:

Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru ,

а в случае стационарных состояний вид его упрощается

Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru ,

где Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru - оператор Гамильтона.

Квадрат модуля волновой функции Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru равен плотности вероятности, т.е. вероятности нахождения частицы в единице объема, Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru .

Величина плотности вероятности является экспериментально наблюдаемой величиной, в то время как сама пси-функция, будучи комплексной, не доступна наблюдению.

Уравнение Шредингера можно применить и к квантовому микросостоянию системы частиц. Однако, в данном случае его решение всегда носит приближённый характер. При концептуальном анализе квантовой системы важную роль играют постулаты Бора (см. схему 32), квантовые статистики (см. схему 33) и квантовые числа микрочастиц (см. схему 34).

Схема 32. Обобщенные в рамках понятия квантовой системы постулаты Н. Бора.

v Первый постулат Бора. Энергетический спектр атома (квантовой системы) дискретен.
v Второй постулат Бора Частоты атомного излучения (электромагнитного излучения квантовой системы) связаны с энергетическими уровнями атома (квантовой системы). При переходе с уровня Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru на уровень Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru испускается квант излучения с частотой Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru . При обратном переходе квант поглощается. Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru .

Вероятностный подход совместно с принципом тождественности, согласно которому состояния системы частиц, получающиеся друг из друга перестановкой тождественных частиц, нельзя различить ни в каком эксперименте, позволяют рассматривать такие состояния как одно физическое состояние. При этом принцип симметрии и асимметрии волновых функций при перестановке двух одинаковых микрочастиц позволяет ввести квантовые статистики Бозе-Эйнштейна и Ферми-Дирака (см. схему 33).

Схема 33. Основные свойства микрочастиц в рамках квантовых статистик.

Название квантовой статистики Свойства соответствующих классов микрочастиц Тип симметрии волновой функции
v Статистика Ш. Бозе и А. Эйнштейна (1924 г.) Бозоны («коллективисты» имеют тенденцию скапливаться в одном квантовом состоянии. Элементарные частицы с целочисленными спинами, например, фотоны, фононы, пионы, тяжелые промежуточные бозоны, глюоны, гравитоны. При перестановке двух одинаковых микрочастиц знак волновой функции не меняется. Симметричные волновые функции.
v Статистика Э.Ферми и П. Дирака (1926 г.) Фермионы («индивидуалисты»). Согласно принципу Паули: «Два и более одинаковых фермиона не могут находиться в одном состоянии». Элементарные частицы с получисленными спинами, например, электроны, протоны, нейтроны, кварки, все лептоны. При перестановке двух одинаковых микрочастиц меняется знак волновой функции. Антисимметричные волновые функции

Как видно из схемы барионная вещественная материя создается из фермионов – протонов, нейтронов и электронов. При этом особое значение, по крайней мере, в объяснении физико-химических свойств химических элементов (совокупности атомов (изотопов) с одинаковым зарядом Z ядра) приобретает электронная структура, т.е. квантовое микросостояние электронов, определяемое набором соответствующих квантовых чисел (см. схему 34).

Схема 34. Квантовые числа и соответствующие условия квантования.

Название квантового числа и задание его значений Условия квантования и основные характеристики
v Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru – главное квантовое число Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru =1, 2, 3… Задает условие квантования энергии и характеризует уровни дискретных значений энергии атома, например, водородоподобного: Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru .
v Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru - азимутальное квантовое число Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru 0, 1, 2, 3, …, Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru . Задает условие квантования момента импульса микрочастицы, например, электрона в атоме: Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru
v Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru - магнитное квантовое число Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru . Задает условие квантования проекции момента импульса микрочастицы, например, электрона в атоме: Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru .
v Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru - спиновое квантовое число Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru Задает условие квантования собственного момента импульса микрочастицы, например, электрона в атоме: Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru . Для электрона Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru .
v Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru - магнитное спиновое число Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru Задает условие квантования проекции собственного момента импульса микрочастицы, например, электрона в атоме: Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru . Характеризует спиновую степень свободы электрона. Для электрона Концепции и методологические принципы квантовой механики. Понятие квантового микросостояния - student2.ru .

Итак, двигаясь от электромагнитной волны к понятию фотона и совершая внешне противоположное движение от электрона к его волне и наблюдению интерференции и дифракции электронов, мы осознали корпускулярно-волновой дуализм материи. Опираясь на корпускулярно-волновой дуализм и поняв вероятностный характер квантовой механики, мы ввели абстрактно-математическое описание квантового микросостояния одной микрочастицы на основе уравнения Шредингера, а также микросостояния системы тождественных частиц на основе квантовых статистик и квантовых чисел. Так мы получили новое видение электромагнитных взаимодействий и приблизились к квантовой электродинамике. Квантовая электродинамика – «это новое воззрение на взаимодействие между электронами и протонами, т.е. электромагнитная теория, но со всеми уточнениями, внесенными квантовой механикой». Как отмечает Р. Фейнман, «квантовая электродинамика – в принципе это теория всей химии, всех жизненных процессов, если жизнь сводится к химии, а, следовательно, и к физике». А так как электромагнитное взаимодействие доминирует в макромире, то «из квантовой электродинамики выводятся все известные механические, электрические и химические законы». Цивилизационная значимость квантовой механики в утилитарно-прикладном плане проявилась как в «физической экономике» индустриальной цивилизации, так и в кооперативном взаимодействии «информационной экономики» с «физической экономикой» в постиндустриальной цивилизации.

Наши рекомендации