Методологические установки неклассической физики

Создание релятивистской, а затем и квантовой физики привело к необходимости пересмотра методологических установок классичес­кой физики. Представим в систематическом виде методологические остановки неклассической физики:

· Признание объективного существования физического мира, т.е. его существования до и независимо от человека и его сознания.

· В отличие от классической физики, которая рассматривала мир физических элементов как качественно однородное обра­зование, современная физика приходит к выводу о наличии трех качественно различающихся структурных уровней мира физи­ческих элементов: микро-, макро- и мегауровней.

· Явления микромира, микропроцессы обладают чертами це­лостности, необратимости и неделимости, которые приводят к качественному изменению представлений о характере взаи­мосвязи объекта и экспериментальных средств исследования.

· Причинность как один из элементов всеобщей связи и взаимо­обусловленности вещей, явлений, событий материального мира присуща и микропроцессам. Но характер причинной связи в микромире отличен от механистического детерминиз­ма. В области микроявлений причинность реализуется через многообразие случайностей, поэтому микропроцессам свойствен­ны не динамические, а статистические закономерности.

· Микроявления принципиально познаваемы. Получение пол­ного и непротиворечивого описания поведения микрочастиц требует выработки нового способа познания и новых методо­логических установок познания.

· Основа познания — эксперимент, непосредственное матери­альное взаимодействие между средствами исследования субъ­екта и объектом. Так же, как и в классической физике, исследо­ватель свободен в выборе условий эксперимента.

· Кардинальные изменения в методологии неклассической физики по сравнению с классической связаны с зависимостью описания поведе­ния физических объектов от условий познания. В релятивистской физике — это учет состояния движения систем отсчета при признании постоянства скорости света в вакууме. В квантовой физике — фундаментальная роль взаимодействия между микрообъектом и измерительным устройством, прибором. Неклас­сическая физика характеризуется, по сути, изменением познаватель­ного отношения субъекта и объекта. В квантовой физике оно фиксируется принципом дополнительности.

· Если в классической физике все свойства объекта могут опре­деляться одновременно, то уже в квантовой физике существу­ют принципиальные ограничения, выражаемые принципом неопределенности.

· Неклассические способы описания позволяют получать объек­тивное описание природы. Но объективность знания не должна отождествляться с наглядностью. Создание механической наглядной модели вовсе не синоним адекватного физического объяснения исследуемого явления.

· Физическая теория должна содержать в себе не только средст­ва для описания поведения познаваемых объектов, но и сред­ства для описания условий познания, включая процедуры исследования.

· В неклассической физике, как и в классической, игнорируется атомная структура экспериментальных устройств.

· Структура процесса познания не является неизменной. Качествен­ному многообразию природы должно соответствовать и многообразие способов ее познания. На основе неклассичес­ких способов познания (релятивистского и квантового) со вре­менем должны сформироваться другие новые способы позна­ния.

Кардинальные изменения в системе методологических установок релятивистской физики (по сравнению с классической) связаны с выявлением зависимости описания поведения физических объектов от условий познания (учет состояния движения систем отсчета при признании постоянства скорости света в вакууме). Произошло изме­нение гносеологической позиции субъекта и объекта — появилась необходимость указания на ту систему отсчета, с позиций которой описывается исследуемая физическая область.

Создание квантовой механики привело к еще более значительно­му пересмотру методологических принципов классической физики: введение нового класса принципиально статистических закономерностей; невозможность провести резкую границу между объектом и прибором и введение принципа дополнительности; невозможность одновременного определения всех свойств микрообъекта (принцип неопределенности); ненаглядность теоретических моделей; неодно­значность употребления понятий; необходимость указывать на усло­вия познания и др.

Во второй половине XX в. основное внимание физиков обращено на создание теорий, раскрывающих с позиций квантово-релятивистских представлений сущность и основания единства четырех фунда­ментальных взаимодействий — электромагнитного, «сильного», «слабого» и гравитационного. Эта задача одновременно является и задачей создания единой теории элементарных частиц теории структуры материи). В последние десятилетия созданы и получили эмпирическое обоснование квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика (теория сильного взаимодействия), есть перспективы на создание единой теории электромагнитного, «слабого» и «сильного» взаимодействий. Физики ожидают, что в отдаленной перспективе к ним должно быть присоединено и гравитационное взаимодействие. Таким образом, естествознание в настоящее время находится на пути к реализации великой цели — созданию единой теории структуры материи.

МИР ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Во второй половине XX в. физики, занятые изучением фундаментальной структуры материи, получили поистине удивительные результаты. Было открыто множество новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частиц.

Новые частицы обычно открывают в реакциях рассеяния уже известных частиц. Для этого сталкивают частицы с как можно большими энергиями, а затем исследуют продукты их взаимодействия и фрагменты, на которые распались образовавшиеся частицы. До 50-х гг. основным источником первичных частиц были космические лучи, а в наше время ускорители, создающие интенсивные пучки частиц с высокими энер­гиями.

Мир субатомных частиц поистине многообразен. Среди них и «кирпичики», из которых построено вещество: составляющие атомные ядра протоны и нейтроны, а также электроны, обращающиеся вокруг ядер. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются — резонансы. Время их жизни — мельчайшие доли секунды. По истечении этого чрезвычайно короткого вре­мени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже свыше трех сотен.

В 50—70-е гг. физики были совершенно сбиты с толку многочисленностью, разно­образием и необычностью вновь открытых субатомных частиц. Если в конце 40-х гг. было известно 15 элементарных частиц, то в конце 70-х гг. уже около четырехсот. Совершенно непонятно, для чего столько частиц. Являются ли элементарные частицы хаотическими и случайными осколками материи или, возможно, за взаимодействиями этих частиц скрывается некоторый порядок, указывающий на существование фундаментальной структуры субъядерного мира? Развитие физики в последующие десятиле­тия показало, что в существовании такой структуры нет никаких сомнений. Миру субатомных частиц присущи объективные закономерности и глубокий структурный порядок. В основе этого порядка — фундаментальные физические взаимодействия.

Наши рекомендации