Ньютоновская концепция абсолютного пространства и времени. Законы движения
Вопросы пространства и времени всегда интересовали человеческое общество. Одна из концепций этих понятий идет от древних атомистов – Демокрита, Эпикура и др. Они ввели в научный оборот понятие пустого пространства и рассматривали его как однородное и бесконечное.
В процессе создания общей картины мироздания Исаак Ньютон (1642–1726), конечно, также не мог обойти вопрос понятия пространства и времени.
В 1687 г. он опубликовал труд «Математические начала натуральной философии», который стал вершиной достижений естествознания XVII в.
По Ньютону, мир состоит из материи, пространства и времени. Эти три категории независимы друг от друга. Материя размещается в бесконечном пространстве. Движение материи происходит в пространстве и времени. Ньютон разделял пространство на абсолютное и относительное. Абсолютное пространство неподвижно, бесконечно. Относительное – это часть абсолютного. Так же он классифицировал и время. Подабсолютным, истинным (математическим) временем он понимал время, которое течет всегда и везде равномерно, а относительное время, по Ньютону, есть мера продолжительности, которая существует в реальной жизни: секунда, минута, час, сутки, месяц, год. У Ньютона абсолютное время существует и длится равномерно само по себе, безотносительно к каким-либо событиям. Абсолютное пространство и абсолютное время представляют собой вместилище всех материальных тел и пространств и не зависят ни от этих тел, ни от этих процессов, ни друг от друга.
Массу Ньютон определяет как количество материи и вводит понятие «пассивной силы» (силы инерции) и «активной силы», создающей движение тел.
Изучив и выявив закономерности движения, Ньютон таким образом сформулировал его законы:
1– й закон.Всякому телу продолжать свое состояние покоя или равномерного прямолинейного движения, поскольку оно не принуждается приложенными силами изменять это состояние.
2– й закон.Изменению движения быть пропорциональным приложенной движущей силе и происходить по направлению той прямой, по которой эта сила действует.
3– й закон.Действию всегда встречать равное противодействие, или воздействию двух тел друг на друга быть между собой равными и направленными в противоположные стороны.
В наше время знаменитые законы формулируются в более удобной форме:
► 1. Всякое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон называют также законом инерции.
► 2. Ускорение, приобретаемое телом, прямо пропорционально силе, действующей натело, и обратно пропорционально массе тела.
► 3. Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.
Второй закон Ньютона нам известен в виде
F = m × a, или a = F/m,
где ускорение а, получаемое телом поддействием силы F, обратно пропорционально массе тела m. Величина m называется инертной массой тела, она характеризует способность тела оказывать сопротивление действующей («активной») силе, то есть сохранять состояние покоя. Второй закон Ньютона справедлив только в инерциальных системах отсчета.
Первый закон можно получить из второго, так как в случае отсутствия воздействия на тело со стороны других сил ускорение также равно нулю. Однако первый закон рассматривается как самостоятельный закон, поскольку он утверждает существование инерциальных систем отсчета.
► Инерииальные системы отсчета – это такие системы, в которых справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы, взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения.
Теоретически может существовать сколь угодно равноправных инерциальных систем отсчета, и во всех таких системах законы физики одинаковы. Это утверждает принцип относительности Галилея (1636 г.).
Научное доказательство существования всемирного тяготения и математическое выражение описывающего его закона стало возможным только на основе открытых И. Ньютоном законов механики. Закон всемирного тяготения был сформулирован Ньютоном в труде «Математические начала натуральной философии» (1687 г.).
Закон всемирного тяготения Ньютон формулирует в следующих тезисах: «тяготение существует для всех тел вообще и пропорционально массе каждого из них», «тяготение к отдельным равным частицам тел обратно пропорционально квадратам расстояний мест к частицам». Этот закон известен в виде:
где m1, ш2 – массы двух частиц, r – расстояние между ними, G – гравитационная постоянная (в системе СИ G = 6,672 · 10-11 м2/кг2). Физический смысл гравитационной постоянной заключается в том, что она характеризует силу притяжения двух масс весом в 1 кг на расстоянии в 1 м.
Открыв закон всемирного тяготения, Ньютон смог дать ответ на вопрос, почему Луна обращается вокруг Земли и почему планеты движутся вокруг Солнца. В каждом отдельном случае он мог рассчитать силу тяготения. Но как передается взаимодействие между массами, притягивающимися друг к другу, какова природа этой силы, Ньютон объяснить не мог.
В трудах Ньютона тяготение – это сила, которая действует на больших расстояниях и как бы без какого-то материального посредника.
Это привело к понятию «дальнодействие». Природу «дальнодействия» Ньютон объяснить не мог. Он думал о каком-то материальном «агенте», с помощью которого осуществляется гравитационное взаимодействие, но в решении этой проблемы он потерпел неудачу. Основываясь на законе всемирного тяготения Ньютона, небесная механика допускает принципиальную возможность мгновенной передачи сигналов, что противоречит современной физике (общей теории относительности). Поэтому буквальное понимание закона тяготения Ньютона с современной точки зрения недопустимо.
Ньютоновская механистическая парадигма в естествознании господствовала более 200 лет, хотя и подвергалась критике по ряду позиций, в том числе и в понимании пространства и времени (Лейбниц, Гегель, Беркли и др.). В конце XIX и в начале XX в. возникли принципиально новые научные представления об окружающей природе. Появились новые парадигмы: сначала релятивистская, а затем квантовая (см. ранее). В физическую картину мира полноправно вошла концепция поля как материальной среды, связывающей частицы вещества, все физические объекты материального мира. В современной физике известны четыре вида взаимодействия материальных объектов: электромагнитное, гравитационное, сильное и слабое (см. выше). Они ответственны за все процессы взаимодействия.
Законы сохранения
Рассмотрим наиболее общие законы сохранения, которым подчиняется весь материальный мир и которые вводят в физику ряд фундаментальных понятий: энергия, количество движения (импульс), момент импульса, заряд.
Закон сохранения импульса
Как известно, количеством движения, или импульсом, называют произведение скорости на массу движущегося тела: p = mv Эта физическая величина позволяет найти изменение движения тела за какой-нибудь определенный промежуток времени. Для решения этой задачи следовало бы применять второй закон Ньютона бесчисленное число раз, во все промежуточные моменты времени. Закон сохранения количества движения (импульса) можно получить, используя второй и третий законы Ньютона. Если рассматривать две (или более) материальные точки (тела), взаимодействующие между собой и образующие систему, изолированную от действия внешних сил, то за время движения импульсы каждой точки (тела) могут изменяться, но общий импульс системы должен оставаться неизменным:
m1v + m1v2 = const.
Взаимодействующие тела обмениваются импульсами при сохранении общего импульса.
В общем случае получаем:
где PΣ – общий, суммарный импульс системы, mivi – импульсы отдельных взаимодействующих частей системы. Сформулируем закон сохранения импульса:
► Если сумма внешних сил равна нулю, импульс системы тел остается постоянным при любых происходящих в ней процессах.
Пример действия закона сохранения импульса можно рассмотреть на процессе взаимодействия лодки с человеком, которая уткнулась носом в берег, а человек в лодке быстро идет из кормы в нос со скоростью v1. В этом случае лодка отойдет от берега со скоростью v2:
Аналогичный пример можно привести со снарядом, который разорвался в воздухе на несколько частей. Векторная сумма импульсов всех осколков равна импульсу снаряда до разрыва.