Концепция целостности в квантовой физике. Парадокс Эйнштейна-Подольского-Розена
В основе естествознания с момента его возникновения и вплоть до открытия Планка господствовала механистическая концепция целого и части. Принципы неопределенности и дополнительности отражают фундаментальную неопределенность явлений природы. Квантовый объект не может быть рассмотрен сам по себе, не обладает индивидуальными свойствами, а находится в классически определенных внешних условиях. Таким образом, в квантовой механике формулируется концепция целостности, отличная от механистической концепции целого и части, ибо объект вне целого и внутри целого не один и тот же; отдельный объект рассматривается лишь в отношении к чему-либо, свои свойства он проявляет лишь по отношению к конкретной целостности, чем и определяется статистическая природа его поведения. Говоря словами Н. Бора: «С открытием Планком элементарного кванта действия началась новая эпоха в физических науках. Это открытие об-
наружило свойственную атомным процессам черту цельности,идущую гораздо дальше старой идеи об ограниченной делимости материи». Боровская интерпретация квантовой теории означает, по существу, отказ от классических представлений о частицах как «внеположенных», «себе-тождественных», «индивидуальных».
Микрообъект постоянно чувствует на себе влияние целостности, элементом которой он является. Известный физик Поль Ланжевен так высказался по этому поводу: «Мне кажется, что основной причиной всех наших современных трудностей является введение представлений об индивидуальных частицах. Сущность принципа неопределенности заключается именно в утверждении невозможности проследить за движением отдельного электрона, то есть невозможности представить его себе в качестве отдельного предмета».
Точка зрения Н. Бора, В. Гейзенберга и их сторонников, названная копенгагенской интерпретацией квантовой механики, конечно, не могла быть воспринята безоговорочно многими физиками, оставшимися верными идеалу строго детерминированного, причинно-следственного описания движения физических объектов. Так, А. Эйнштейн не принял принципиально статистический характер копенгагенской интерпретации квантовой теории. В. Гейзенберг вспоминает о беседах на Сольвеевском конгрессе в Брюсселе, куда по традиции фонда Сольве в 1927 году была приглашена группа специалистов по квантовой теории: «Эйнштейн не хотел допустить принципиальную невозможность познания всех определяющих моментов, необходимых для полной детерминации рассматриваемых процессов. «Господь Бог не играет в кости», — это выражение часто можно было услышать от него во время дискуссий. Эйнштейн не мог поэтому примириться с соотношением неопределенности и старался придумать эксперименты, в которых эти соотношения уже не имели бы места».
Дискуссия между Бором и Эйнштейном длилась около десяти лет и сыграла очень важную роль в формировании основ квантовой теории. Именно этот спор привел к более глубокому пониманию концепции целостности.Свое содержательное развитие эта концепция получила благодаря работе трех авторов — А. Эйнштейна, Б. Подольского и Н. Розена «Можно ли считать квантово-механическое
описание физической реальности полным?», опубликованной в 1935 году. В этой работе формулируется парадокс, названный парадоксом Эйнштейна — Подольского — Розе-на (ЭПР-парадокс). Если вся предыдущая полемика между Бором и Эйнштейном концентрировалась, в основном, вокруг принципа неопределенности (Эйнштейн предлагал пример, опровергающий соотношение неопределенностей, а Бор всегда доказывал ошибочность аргументов Эйнштейна), то в ЭПР-парадоксе предложена ситуация, приведшая, в конечном счете, вопреки ожиданиям ее авторов, к расширению принципа целостности. Ситуация, предлагаемая авторами парадокса, состоит в следующем: пусть некоторая частица самопроизвольно распадается на две частицы, которые расходятся на столь большое расстояние друг от друга, что физическое взаимодействие между ними исключается. Тогда, если квантовая механика верна, измерение, произведенное над одной из частиц, должно приводить к однозначному предсказанию соответствующей характеристики (импульса, момента импульса — в зависимости от типа измерения над первой частицей) другой. Иными словами, не произведя эксперимент над второй частицей, не возмущая ее, на основании квантовой механики должно получаться определенное числовое значение ее характеристик независимо от акта воздействия. Следует сказать, что в настоящее время ЭПР-парадокс надежно подкреплен экспериментами. Известно, что Бор дал немедленный ответ на рассуждения авторов парадокса, утверждая, что физическую реальность необходимо трактовать на основе идеи нераздельности экспериментальной ситуации, неделимости и целостности квантовых явлений. ЭПР-парадокс для своего решения открывает возможность для более полного использования концепции целостности, не апеллирующей к целостности экспериментальной ситуации. Здесь речь идет уже не о целостности экспериментальной ситуации, а о целостности квантовой системы, об особом коррелятивном, взаимосвязанном поведении квантовых объектов. Объекты, составлявшие некогда единое целое, разведенные друг от друга на расстояния, исключающие взаимодействия, сохраняют на себе печать прошлого, и любые изменения одного партнера приводят к коррелятивному поведению второго. Этот перенос состояния с одной частицы на другую, независимо от того, как далеко друг от друга они находятся,
называют квантовой телепортацией. Мир предстает перед нами как единая целостная единица, несводимая к механическому разложению его на составные части. Таким образом, в квантовой механике сформировано представление о целостном, неразложимом характере мира, о не сведении его к отдельным элементам. Этот результат, имеющий глубокое мировоззренческое значение, является едва ли не самой удивительной страницей в истории физики и имеет далеко идущие перспективы по развитию телепортационных способов передачи информации. XXI век, по всей видимости, станет веком квантовой телепортации.