Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы.

Степенями свободыхарактеризуется способность системы (в нашем случае молекулы) совершать независимые движения. В соответствии с видами механического движения различают поступательные, вращательные и колебательные степени свободы.

Числом степеней свободы механической системы называется количество независимых величин, однозначно определяющих ее положение и конфигурацию в пространстве.

Закон равнораспределения по степеням свободы: если система молекул находится в состоянии теплового равновесия при температуре T, то средняя кинетическая энергия равномерно распределена между всеми поступательными и вращательными степенями свободы и для каждой поступательной или вращательной степени она равна kT/2 , а энергия, приходящаяся на колебательную степень свободы, равна kT (где k — постоянная Больцмана).

Средняя полная кинетическая энергия молекулы с жесткими связями, включающая кинетическую энергию поступательного и вращательного движения, вычисляется по формуле Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы. - student2.ru .

Скорости газовых молекул. Наиболее вероятная, средняя арифметическая и среднеквадратичная скорости газовых молекул.

В газе, находящемся в состоянии равновесия, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям (v), которое подчиняется закону, теоретически полученному Максвеллом. Закон Максвелла представлен в виде некоторой функцией f(v), называемой функцией распределения молекул по скоростям. Если разбить диапазон скоростей молекул на малые интервалы, равные dv, то на каждый интервал скорости будет приходиться некоторое число молекул dN(v), имеющих скорость, заключенную в этом интервале. Функция f(v) представляет собой отношение доли (относительного количества) молекул dN(v)/N, скорости которых лежат в интервале от v до v + dv, в величине этого интервала dv.

Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы. - student2.ru (1)

Применяя методы теории вероятности, Максвелл нашел функцию f(v), т.е. закон для распределения молекул идеального газа по скоростям:

Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы. - student2.ru (2)

Здесь mo – масса одной молекулы.

Вид функции этой функции

Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы. - student2.ru

Используя ее можно получить выражения для следующих скоростей молекул:

Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы. - student2.ru — средняя квадратичная;

Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы. - student2.ru — средняя арифметическая;

Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы. - student2.ru — наиболее вероятная,

где то— масса одной молекулы.

Барометрическая формула. Распределение Больцмана

Барометрическая формула имеет вид Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы. - student2.ru ,

где m — молярная масса газа, R — универсальная газовая постоянная, тo — масса одной молекулы, k — постоянная Больцмана, Т — термодинамическая температура.

Она показывает, как изменяется атмосферное давление в зависимости от высоты. Из нее, учитывая, что mogh = П — потенциальная энергия молекулы в поле тяготения, можно получить

Средняя энергия молекул. Число степеней свободы газовых молекул и теплоемкость газов. Закон равнораспределения энергии по степеням свободы. - student2.ru

Эта формула называется распределением Больцмана для молекулво внешнем потенциальном поле.

Наши рекомендации