Любопытная особенность рентгеновских излучений

Нижеследующие эксперименты, проведенные с трубками, испускающими рентгеновские лучи, представляют интерес, поскольку проливают дополнительный свет на природу этих излучений, а также полнее иллюстрируют уже известные свойства. В основном данные наблюдения соответствуют тем идеям, которые с самого начала полностью овладели моим сознанием; суть их в том, что лучи состоят из потоков мельчайших материальных частиц, выбрасываемых с огромной скоростью. В ходе многочисленных экспериментов я убедился, что материя, которая при ударе вызывает образование лучей, может исходить из любого электрода. Ввиду того, что последний при длительном использовании претерпевает заметные структурные изменения, более убедительным выглядит предположение, что выбрасываемая материя состоит из частиц самих электродов, а не из частиц остаточного газа. Однако и другие наблюдения, на которых сейчас нет возможности подробно останавливаться, приводят к такому заключению. При ударе массы выбрасываемой материи дробятся на мельчайшие частицы, способные проникать сквозь стенки колбы, или отрывают такие частицы от стенок либо вообще от тел, на которые попадают. Во всяком случае, удар с последующим дроблением представляется абсолютно необходимым условием для генерирования рентгеновских лучей. Вибрация, если таковая имеется, является лишь следствием работы аппарата, и колебания могут быть только продольными.

Главный источник лучей — исключительно место первого столкновения внутри колбы, будь то анод, как в некоторых типах трубки, или помещенное внутрь колбы изолированное тело, или стеклянная стенка. Когда исходящая из электрода материя после удара о препятствие отбрасывается на другое тело, например, на стенку колбы, место второго столкновения становится очень слабым источником лучей.

Любопытная особенность рентгеновских излучений - student2.ru

Ил. 1

Иллюстрация 1, представляющая применявшийся в ряде экспериментов тип трубки, поможет лучше разобраться в этих и других выводах. В основном это тот тип трубки, который был описан ранее при других обстоятельствах. Одинарный электрод e , состоящий из массивной алюминиевой пластины, смонтирован с кабелем с , имеющим, как обычно, стеклянное защитное покрытие w и герметично впаянным в один из концов прямой трубы b , диаметр которой около 5 сантиметров, а длина 30 сантиметров. Другой конец трубы в результате выдувания имеет форму тонкостенной колбы несколько большего диаметра, и в этой части трубы на стеклянном штоке s укреплена воронка f из тонкого платинового листа. В таких лампах я пробовал различные металлы в качестве мишени столкновения, чтобы увеличить интенсивность лучей, а также для отражения и концентрации лучей. Но поскольку профессор Рентген в недавней статье подчеркнул, что наиболее интенсивные лучи дает платина, я использовал главным образом этот металл, убеждаясь в заметном усилении воздействия на экран или на чувствительную пластину. Описываемое здесь устройство специально сконструировали, чтобы выяснить, будут ли лучи, возбужденные на внутренней поверхности платиновой воронки f, фокусироваться снаружи колбы, и, более того, будут ли они исходить прямолинейно из точки фокусирования. С этой целью воображаемую вершину конуса воронки вывели из колбы наружу примерно на два сантиметра, что соответствует точке о.

Когда в лампе был достигнут необходимый вакуум и она начала работать, стенка стеклянной колбы под воронкой f стала сильно фосфоресцировать, но неоднородно, поскольку образовалось узкое кольцо rr 1, более яркое в периферийной части; очевидно, что это кольцо появилось благодаря воздействию лучей, отразившихся от платинового листа. Когда флюоресцирующий экран соприкасался или приближался к стеклянной стенке колбы под воронкой, часть экрана в непосредственной близости от флюоресцирующего участка была ярко освещена, а контуры пятна при этом совсем размыты. При удалении экрана от колбы ярко освещенное пятно становилось меньше, а его контуры отчетливее до тех пор, пока по достижении точки о светящаяся часть не сокращалась до маленькой точки. Продвижение экрана на несколько миллиметров дальше от точки о вызывало появление маленькой черной точки, которая расширялась до круга и становилась тем больше, чем больше увеличивалось расстояние от колбы, пока на достаточно большом расстоянии темный круг не охватывал весь экран. Этот безукоризненный эксперимент наглядно продемонстрировал прямолинейное распространение лучей, что ранее доказал Рентген методом микроканальной фотографии. Но кроме этого выявилась одна важная деталь, а именно: флюоресцирующая стеклянная стенка практически не испускала лучей, тогда как при отсутствии платинового экрана, но при прочих равных условиях она стала бы эффективным источником лучей, так как стекло даже при слабом возбуждении колбы сильно нагревалось. Можно дать единственное объяснение отсутствию излучения от стекла, предположив, что исходящая из поверхности платинового листа материя уже находится в диспергированном состоянии, когда она попадает на стеклянную стенку. Примечательно также и то, что уже при слабом возбуждении лампы края темного пятна были четкими, что решительно отвергает возможность диффузии. При очень сильном возбуждении лампы фон становился ярче, а теневая проекция S более расплывчатой, хотя и тогда она всё еще оставалась видимой.

Вышеизложенное приводит к очевидному выводу, что при использовании лампы соответствующей конструкции испускаемые лучи концентрируются на любом малом пространстве на некотором расстоянии, и из этого факта можно извлечь практическую пользу, получая отпечатки на пластину или исследуя тела с помощью флюоресцирующего экрана.

«Electrical Review», 8 июля 1896 г.

Наши рекомендации