Заметки по поводу униполярной динамо-машины

Фундаментальным открытиям, великим достижениям разума свойственно неослабно держать в своей власти воображение мыслителя. Достопамятный эксперимент Фарадея с диском, вращающимся между двумя полюсами магнита, принесший такие великолепные плоды, давно стал обыденным явлением, и всё же у этого прообраза нынешних динамо-машин и двигателей есть определенные особенности, которые даже сегодня кажутся нам поразительными и заслуживают самого тщательного изучения.

Рассмотрим, например, диск из железа или другого металла, вращающийся между двумя противоположными полюсами магнита, когда поверхности полюсов полностью охватывают обе стороны диска, и предположим, что с помощью контактов ток равномерно снимается со всех точек периметра диска и поступает на него. Рассмотрим сначала двигатель. Во всех обычных двигателях их работа зависит от некоторого смещения или изменения равнодействующей силы магнитного притяжения, действующей на якорь. Этот процесс осуществляется или с помощью механического приспособления на двигателе, или благодаря действиям токов соответствующего свойства. Мы можем объяснить принцип действия такого двигателя с тем же успехом, как мы делаем это в отношении водяного колеса. Но в вышеприведенном примере с диском, находящимся полностью между полярными поверхностями, нет смещения магнитного воздействия, никаких изменений не происходит, но, насколько нам известно, вращение всё-таки имеет место. В этом случае привычные суждения неприменимы; мы не можем дать даже поверхностного объяснения явлению, как это было бы возможным для обычных моторов, и принцип действия станет нам понятным только тогда, когда мы осознаем истинную природу задействованных сил и поймем тайну невидимого связующего механизма.

Рассматриваемый в качестве динамо-машины диск в равной степени интересен и как объект изучения. В дополнение к своему особенному свойству вырабатывать токи одного направления без применения переключающих устройств такой генератор отличается от обычных динамо-машин еще тем, что в нем не происходит реактивного взаимодействия между якорем и полем. Ток в якоре имеет свойство создавать магнитное поле, направленное под прямым углом к полю возбуждения, но поскольку ток снимается равномерно со всех точек периметра и, если быть точным, внешний контур тоже можно смонтировать идеально симметрично к электромагниту, никакая реакция не может произойти. Это, однако, верно только до тех пор, пока магниты слабо подпитываются, ибо когда магниты более или менее насыщены, намагниченные под прямым углом поля, по-видимому, интерферируют.

Из одного только этого примера явствует, что мощность такого генератора должна быть намного больше, чем у другой подобной машины при одном и том же весе, в которой ток якоря имеет свойство размагничивать поле. Исключительно высокая мощность униполярной динамо-машины Форбза и опыт автора подтверждают эту точку зрения.

С другой стороны, легкость, с которой такие машины, способные самовозбуждаться, могут быть построены, поразительна, но это может быть обусловлено — помимо отсутствия противодействия со стороны якоря — идеальной однородностью тока и отсутствием самоиндукции.

Если полюсы не охватывают диск полностью с обеих сторон, тогда, конечно, генератор станет работать очень неэффективно, если только диск не будет должным образом разделен. Кроме того, есть еще моменты, заслуживающие внимания. При условии, что диск вращается, а ток возбуждения прерывается, сквозь якорь он пойдет непрерывно, а возбуждающие магниты будут терять свою напряженность сравнительно медленно. Причина этого сразу станет понятной, когда мы рассмотрим направление токов в диске.

Заметки по поводу униполярной динамо-машины - student2.ru

Ил. 1

На схеме ил. 1 d обозначает диск со скользящими контактами ВВ' у оси и на окружности. N и S обозначают два полюса магнита. Предполагается, что полюс N находится впереди, как показано на схеме, а диск — в плоскости рисунка и вращается в направлении, указанном стрелкой D ; ток в диске протекает от центра к краю, как указывает стрелка А. Поскольку действие магнитного поля более или менее ограничено пространством между полюсами NS, другие части диска могут рассматриваться как неактивные. Следовательно, создаваемый ток не полностью пройдет по внешнему контуру F , но будет замыкаться на самом диске, и, как правило, если расположение в какой-то степени подобно представленному на рисунке, значительная часть генерированного тока не выйдет наружу, так как контур F практически замкнут накоротко нерабочей частью диска. Можно предположить, что направление результирующих токов в последнем будет таким, как указано пунктирной линией и стрелками m и n , а направление питающего тока возбуждения обозначено стрелками abcd. Рисунок показывает, что вихревой ток одного из двух направлений, а именно АВ'тВ , стремится размагнитить поле, в то время как другой ток, а именно АВ'пВ , производит противоположное действие. Следовательно, ток направления АВ'тВ , который создает приближающееся поле, будет расталкивать силовые линии, тогда как ток направления АВ'пВ, а именно создающий удаляющееся поле, будет притягивать силовые линии к себе.

Вследствие этого всегда будет проявляться тенденция к ослаблению тока в токопроводящем пути АВ'тВ , тогда как в пути тока АВ'пВ такого противодействия не будет, и эффект последнего из названных направлений, или токопроводящих путей, будет иметь перевес в большей или меньшей степени над первым. Общий эффект от токов в обоих предполагаемых направлениях может быть эквивалентен по результативности одиночному току того же направления, что и ток, создающий поле. Другими словами, вихревые токи, циркулирующие в диске, будут питать возбуждающий магнит. Этот результат совершенно противоположен тому, к которому мы могли бы прийти, поскольку, естественно, ожидали, что результирующее воздействие тока в обмотке якоря станет проявляться в противодействии току возбуждения, как это обычно происходит, когда проводники токов первичной и вторичной обмоток находятся в индуктивной связи. Но следует помнить, что в данном случае это происходит благодаря особому расположению двух путей, предоставленных току, и он выбирает тот, где при своем прохождении встречает наименьшее противодействие. Отсюда мы видим, что вихревые токи, проходящие в диске, частично подпитывают поле, и поэтому, когда ток возбуждения прерывается, токи в диске продолжают течь, и ослабление напряженности возбуждающего магнита будет происходить сравнительно медленно, и он сможет даже сохранять определенную степень напряженности, пока происходит вращение диска.

Конечно, результат в значительной степени будет зависеть от сопротивления и геометрических размеров пути результирующего вихревого тока и скорости вращения; эти факторы, в частности, обусловливают замедление этого тока и его положение относительно поля. Определенной скорости будет соответствовать максимальное возбуждающее действие; тогда при возрастании скорости оно будет постепенно падать до нуля и в конце концов реверсировать, то есть результирующий эффект вихревого тока должен будет ослаблять поле. Это взаимодействие лучше всего продемонстрировать экспериментально, разместив обмотки возбуждения NS и N 1S 1 так, чтобы они свободно двигались на оси и располагались концентрически по отношению к оси диска. Если бы последний вращался, как и раньше, в направлении стрелки D , поле увлекалось бы в одном направлении с крутящим моментом, который до определенной точки будет нарастать вместе со скоростью вращения, затем спадать и, пройдя через нулевую отметку, в конце концов станет отрицательным; то есть поле начнет вращаться в обратном направлении относительно диска. Этот интересный результат наблюдался в опытах с электродвигателями переменного тока, в которых поле смещалось токами другой фазы. При очень низких скоростях вращения поля двигатель покажет крутящий момент в 900 фунто-футов или выше, который проявится на шпинделе диаметром 12 дюймов. Когда скорость вращения полюсов возрастала, крутящий момент уменьшался, доходил, в конце концов, до нуля, становился отрицательным, и тогда якорь начинал вращаться в противоположном относительно поля направлении.

Вернемся к основному вопросу. Допустим, что условия будут таковы, что вихревые токи, вызванные вращением диска, усиливают поле, и предположим, что поле постепенно перемещается, пока диск вращается с нарастающей скоростью. Ток, однажды возникнув, может затем быть достаточным, чтобы сохраниться и даже увеличить силу, и тогда мы получим то, что известно как «аккумулятор тока» сэра Уильяма Томсона. Но вышеизложенные соображения приводят к очевидному выводу: для успешного проведения эксперимента необходимо использовать неразделенный диск, ибо при наличии радиального деления вихревые токи не могут сформироваться и процесс самовозбуждения прервется. Если бы был использован такой радиально разделенный диск, возникла бы необходимость соединить деления с помощью токопроводящей скобы или любым другим подходящим способом, чтобы образовать симметричную систему замкнутых контуров.

Заметки по поводу униполярной динамо-машины - student2.ru

Ил. 2

Заметки по поводу униполярной динамо-машины - student2.ru

Ил. 3

Действие вихревых токов можно использовать для возбуждения машин любой конструкции. Например, на ил. 2 и 3 показана компоновка, при которой может возбуждаться машина с дисковым якорем. Здесь магниты NS, NS размещаются радиально на каждой стороне металлического диска D , имеющего по краю определенное количество изолированных катушек СС . Магниты образуют два обособленных поля, внутреннее и внешнее, при этом твердый диск вращается в ближайшем к оси, а катушки находятся в более удаленном от оси. Допустим, что магниты изначально слабо намагничены; под воздействием вихревых токов в твердом диске их возбуждение может возрасти настолько, что создает более сильное поле для периферийных катушек. Однако, несмотря на то что при соблюдении надлежащих условий машина, несомненно, может возбудиться тем или иным способом, имеется достаточно много полученных экспериментальным путем доказательств расточительности такого способа возбуждения.

Но такой тип униполярной машины или двигателя, какой показан на ил. 1, может эффективно возбуждаться просто при правильном разделении диска или цилиндра, в которых образуются токи, что дает реальную возможность избавиться от обычно применяемых катушек возбуждения. Такая схема представлена на рисунке 4. Предполагается, что диск или цилиндр D установлен таким образом, чтобы он мог вращаться между полюсами N и S магнита, который полностью закрывает его с обеих сторон, контуры диска и полюсы представлены в виде окружностей d и d 1 соответственно, передний полюс не показан, чтобы было лучше видно. В середине магниты должны быть полыми, чтобы сквозь них могла пройти ось С диска. Если необозначенный полюс находится сзади, а диск вращается но часовой стрелке, ток будет проходить, как и прежде, от центра к краю окружности, и с помощью скользящих контактов ВВ 1 он может поступать на ось и на окружность соответственно. В этом устройстве ток, проходящий сквозь диск и внешний контур, не будет оказывать заметного влияния на возбуждающий магнит.

Заметки по поводу униполярной динамо-машины - student2.ru

Ил. 4

А теперь предположим, что на диск нанесены разделительные линии в виде спирали, как показано на ил. 4 сплошными и пунктирными линиями. Разность потенциалов между точкой на оси и точкой на окружности останется неизменной как по знаку, так и по величине. Единственное отличие будет состоять в том, что сопротивление диска возрастает и перепад напряжения от точки на оси к точке на окружности будет бóльшим, когда тот же ток будет проходить по внешнему контуру. Но поскольку ток вынужден придерживаться разделительных линий, мы увидим, что он будет способен то усиливать энергию поля, то ослаблять ее, и это будет зависеть, при прочих равных условиях, от направления разделяющих линий. Если разделение таково, как показывают сплошные линии на рисунке 4, то становится очевидным: если ток имеет направление, что и прежде, т. е. от центра к краю окружности, то его воздействие будет усиливать электромагнит, тогда как если разделение соответствует пунктирным линиям, генерированный ток будет ослаблять магнитное поле. В первом случае генератор сможет самовозбуждаться, когда диск вращается в направлении стрелки D , во втором случае направление вращения должно быть противоположным. Однако возможно соединение двух таких дисков. Два диска будут вращаться в противоположных полях в том же или в противоположном направлении.

Подобное можно, конечно, использовать в генераторах, в которых вместо диска вращается цилиндр. В таких униполярных генераторах можно обойтись без катушек возбуждения и без полюсов, как показано выше, и можно создать генератор, состоящий только из цилиндра или двух дисков, помещенных внутри металлического корпуса.

Заметки по поводу униполярной динамо-машины - student2.ru

Ил. 5

Вместо спиралевидных разграничительных борозд на диске или цилиндре, как показано на ил. 4, удобнее вставить один или несколько витков между диском и контактным кольцом на окружности, как показано на ил. 5.

Динамо-машина Форбза, к примеру, может работать по такому принципу. В результате опытов автор пришел к заключению, что вместо обычных скользящих контактов для снятия тока с двух таких дисков выгоднее использовать гибкую проводящую ленту. В этом случае на дисках имеются широкие бортики с очень большой контактной поверхностью. Проводящая лента должна быть смонтирована таким образом, чтобы она могла опираться на бортики под упругим давлением для создания контакта. Два года тому назад автором было построено несколько машин с ленточными контактами, которые удовлетворительно работали. Но из-за недостатка времени работа в этом направлении была временно приостановлена. Ряд интересных находок, описанных выше, автор использовал в связи с некоторыми типами двигателей, работающих от переменного тока.

«The Electrical Engineer», Нью-Йорк, 2 сентября 1891 г.

О рентгеновских лучах (1)

Человек не может смотреть на небольшую лампу Крукса без чувства, близкого к благоговению, когда он размышляет о том, сколь много было совершено в науке с ее помощью. Это, во-первых, великолепные результаты, полученные ее создателем; затем выдающаяся работа Ленарда и, наконец, удивительные достижения Рентгена. Кроме того, она, вероятно, несет в себе демоническую благодарность Асмодея, который будет выпущен из своей тесной темницы удачливым ученым. Временами мне и самому слышался шепот, и я начинал усердно рыться в своих пыльных колбах и бутылках. Боюсь, мое воображение вводило меня в заблуждение, но они всё еще здесь, мои пыльные колбы, и я всё еще прислушиваюсь, полный надежд.

Повторив превосходные эксперименты профессора Рентгена, я направил все свои силы на исследование природы излучений и совершенствование способов их получения. Нижеследующее является кратким и, надеюсь, полезным описанием применявшихся методов и наиболее выдающихся результатов, достигнутых в этих двух направлениях.

Чтобы получить наиболее интенсивные излучения, мы должны сначала принять во внимание, что, какова бы ни была их природа, они неизбежно зависят от интенсивности катодных потоков. Последние, в свою очередь, зависят от величины потенциала; отсюда следует: желательно применять максимально достижимое электрическое напряжение.

Чтобы получить высокое напряжение, мы можем воспользоваться простой индукционной катушкой, электростатической машиной или катушкой с разрядником. У меня создалось впечатление, что в Европе большинство результатов было достигнуто благодаря применению электростатической машины или катушки Румкорфа.

Но поскольку эти электрические устройства могут вырабатывать лишь сравнительно небольшой потенциал, мы, естественно, вынуждены применять катушку с разрядником в качестве наиболее эффективного преобразователя. Ее применение практически не ограничивает длину искрового разряда, и единственным условием является обязательное владение экспериментатором определенными знаниями и навыками в настройке контуров, в частности, в том, что касается резонанса, на это я указывал в своих предыдущих работах по данному вопросу.

После создания катушки с разрядником, пригодной для подключения к любому типу тока, постоянному или переменному, экспериментатор приходит к размышлениям относительно того, какого типа колбу использовать. Понятно, если мы помещаем в колбу два электрода или применяем один внутренний и один наружный электроды, мы ограничиваем потенциал, поскольку наличие не только анода, но любого проводящего объекта действует понижающе на реально достижимый потенциал катода. Таким образом, чтобы добиться намеченной цели, экспериментатор неизбежно приходит к идее применения колбы с одним электродом, при этом второй электрод должен находиться на возможно большем удалении.

Очевидно, что действие внутреннего электрода должно обеспечивать максимальную скорость катодных потоков, так как лампы без внутренних электродов для этих целей гораздо менее продуктивны вследствие потерь энергии в стекле. Существует, по-видимому, распространенная ошибка относительно концентрации лучей с помощью вогнутых электродов. Во всяком случае, это невыгодно. Для такой лампы имеются определенные специальные схемы из катушек с разрядником и контуров, конденсаторов и статических экранов, о чем я подробно рассказал в предыдущих статьях.

Заметки по поводу униполярной динамо-машины - student2.ru

После того как сделан выбор индукционного устройства и типа лампы, следующим важным объектом размышлений является вакуум. Относительно этого предмета могу довести до всеобщего сведения явление, известное мне уже давно и возможности которого я использовал для производства вакуумных рубашек и всевозможных ламп накаливания, а само его впоследствии счел крайне важным, если не сказать существенным, для получения отчетливых рентгеновских отпечатков. Я имею в виду метод разрежения с помощью электрических средств до любой желаемой степени, намного превышающей достигаемую с помощью механических устройств.

Хотя к этому результату можно прийти, применяя статическую машину, а также обычную индукционную катушку, дающую достаточно высокое напряжение, я обнаружил, что в значительно большей степени подходящим аппаратом, обеспечивающим к тому же максимальную быстроту в работе, является катушка с разрядником. Лучше всего соблюдать следующий порядок действий: сначала из лампы откачивается воздух с помощью обычного вакуумного насоса до достаточно высокой степени разрежения, хотя мои опыты доказали, что это совсем не обязательно, так как я посчитал возможным создавать вакуум, начиная с низкого давления. После создания вакуума в колбе лампа присоединяется к клемме катушки с разрядником предпочтительно с высокой частотой колебаний, и обычно отмечается следующее явление: сначала по лампе растекается молочно-белый свет, при высокой степени разрежения в колбе стекло может фосфоресцировать в течение короткого времени. Во всяком случае, свечение, как правило, быстро исчезает, а белый свет концентрируется вокруг электрода, после чего на некотором расстоянии от последнего формируется темное пространство. Вскоре после этого свет приобретает красноватый цвет, а клемма очень сильно нагревается. Этот нагрев, однако, наблюдается только на мощных аппаратах. На этой стадии целесообразно внимательно следить за лампой и контролировать напряжение, так как электрод может быстро сгореть.

Спустя некоторое время красноватый свет исчезает, потоки опять становятся белыми, после чего они, ослабевая, пульсируют вокруг электрода, пока окончательно не исчезнут. Между тем свечение стекла становится всё более и более интенсивным, а то место в колбе, куда поток бьет, становится очень горячим, в то же время свечение вокруг электрода исчезает, и он до такой степени охлаждается, что стекло вокруг него может быть, как ни удивительно, холодным, как лед. Газ в колбе к этому времени достигает необходимой степени разрежения. Процесс можно ускорить, если попеременно осуществлять нагревание и охлаждение и использовать небольшой электрод. Следует добавить, что точно так же можно использовать лампы с наружными электродами. Пожалуй, будет представлять интерес примечание, что при определенных условиях, более глубоким исследованием которых я занимаюсь, давление газа в сосуде можно увеличивать с помощью электричества.

Полагаю, что разрушение электрода, которое неизменно происходит, связано с резким снижением температуры. В момент, когда электрод становится холодным, лампа готова для производства рентгеновских отпечатков. Как только электрод становится таким же горячим, как стекло, — это верный знак, что вакуум недостаточно высок или что электрод слишком мал. Для высокоэффективной работы внутренняя поверхность колбы, на которую наталкивается катодный поток, должна производить впечатление, будто стекло находится в жидком состоянии.

Я обнаружил, что в качестве охлаждающей среды лучше всего применять потоки холодного воздуха. Применяя этот способ, можно успешно работать с лампой, имеющей очень тонкие стенки, при этом прохождение лучей не встречает значительных препятствий.

Хочу призвать не удерживать экспериментаторов от использования стеклянной колбы, поскольку убедился, что непрозрачность стекла, так же как прозрачность алюминия, до некоторой степени преувеличена, поскольку очень тонкий алюминиевый лист отбрасывает ясно различимую тень, в то же время удалось получить отпечатки через толстую стеклянную пластину.

Описанный выше метод ценен не только как способ получения сколь угодно высоких вакуумов, но он еще более важен тем, что наблюдаемое явление проливает свет на результаты, полученные Ленардом и Рентгеном.

Хотя феномен разрежения при описанных выше условиях допускает различные интерпретации, основной интерес вызывает одна из них, которой я придерживаюсь, то есть фактически происходит выброс частиц сквозь стенки колбы. В последнее время я замечал, что колба начинает действовать должным образом на чувствительную пластину только с момента, когда разрежение становится заметным, а производимый эффект наиболее ярок, когда процесс разрежения наступает быстро, даже несмотря на то, что фосфоресценция может и не проявиться особенно ярко. В таком случае очевидно, что два явления тесно связаны и всё более убеждают, что нам приходится иметь дело с потоком материальных частиц, которые с большими скоростями падают на чувствительную пластину. Основываясь на мнении лорда Кельвина о скорости выбрасываемых частиц в лампе Крукса, мы при очень высоких потенциалах без труда добьемся скоростей в целую сотню километров в секунду. Теперь, с другой стороны, встает известный вопрос: выбрасываются частицы из электрода или из заряженной поверхности вообще, включая вариант с наружным электродом, сквозь стеклянные или алюминиевые стенки или они просто ударяются о внутреннюю поверхность и вырывают частицы из внешней стороны колбы, действуя исключительно механически, подобно тому, как разбивается шеренга бильярдных шаров? До сих пор большая часть явлений указывает на то, что они выбрасываются через стенку колбы, из какого бы материала она ни была сделана, и я нахожусь в поиске дополнительных решающих свидетельств в этом направлении.

Возможно, неизвестен факт, что даже обычный стример, внезапно и под большим давлением вырываясь из клеммы разрядной катушки, проходит сквозь толстую стеклянную пластину, как будто ее не существует. Несомненно, что с помощью такой катушки достижимы напряжения, которые будут выбрасывать частицы, движущиеся прямолинейно, даже при атмосферном давлении. Я получил отчетливые отпечатки в условиях обычного атмосферного давления не с помощью стримеров, как это делали некоторые экспериментаторы, применяя статические машины или индукционные катушки, а с помощью практического вбрасывания, при этом образование стримеров полностью исключалось благодаря тщательному статическому экранированию.

Заметки по поводу униполярной динамо-машины - student2.ru

Специфическая особенность рентгеновских лучей состоит в том, что частоты, от низких до максимально достижимых, по-видимому, не влияют на качество производимых действий, за исключением того, что они становятся интенсивнее при более высоких частотах, вероятно, это обусловлено тем фактом, что в этом случае также повышается максимальное напряжение на катоде. Это возможно только при исходной посылке, когда воздействия на чувствительную пластину обусловлены выбросом частиц или вибрациями, намного превышающими любую частоту, какую мы можем получить с помощью разрядов конденсатора. Сильно возбужденная лампа окутана облаком фиолетового света, простирающегося вокруг нее более чем на фут, но с другой стороны этого видимого явления нет никакого достоверного доказательства существования волн подобных световым. С другой стороны, тот факт, что светонепроницаемость находится в определенной пропорциональной зависимости от плотности вещества, является веским аргументом в пользу материальных потоков, то же самое можно сказать и об эффекте, открытом профессором Дж. Дж. Томсоном.

Можно получить важное свидетельство, доказывающее природу излучений, и добиться успеха, повышая четкость отпечатков, если усовершенствовать пластины, сделав их чувствительными к механическому удару или импульсу. Для этой цели существуют соответствующие химические препараты, а разработка этого направления может привести к отказу от применяемой сейчас пластины. Более того, если нам приходится иметь дело с потоками материальных частиц, то, очевидно, представляется возможным подобрать для пластины соответствующий материал, чтобы получить эффективную химическую реакцию.

С помощью описанных аппаратов на пластине получаются отчетливые отпечатки. Представление об интенсивности излучений дает мое наблюдение: можно без труда получать отпечатки при сравнительно короткой экспозиции с расстояний во многие футы, в то же время для небольших расстояний и тонких предметов применяется экспозиция в несколько секунд. Прилагаемый снимок являет собой тень медной проволоки, спроецированной с расстояния 11 футов сквозь деревянный щит над чувствительной пластиной. Это был первый снимок, сделанный усовершенствованным аппаратом в моей лаборатории. Подобный отпечаток был получен сквозь тело экспериментатора, стеклянную пластину толщиной почти в 3/16 дюйма и толщу древесины в два дюйма с расстояния около четырех футов. Я, однако, могу отметить: когда делались эти отпечатки, мой аппарат работал в чрезвычайно неблагоприятных условиях, и это способствовало производству столь многих усовершенствований, и теперь я надеюсь на многократное улучшение результатов.

Костная структура птиц, кроликов и других позвоночных представлена до мельчайших деталей, четко видна даже пустая полость в костях. На пластине с кроликом после одного часа экспозиции видна не только каждая деталь скелета, но четко видно строение брюшной полости и расположение легких.

Четкие отпечатки костей конечностей человека получаются при экспозициях в пределах от четверти до одного часа, и некоторые пластины показали такое количество деталей, что почти невозможно поверить, что мы имеем дело всего лишь с тенями. Например, был сделан снимок ступни в обуви, и на нем видна каждая складка на кожаной обуви, брюки, носки и т. д., в то же время определенно выделяются плоть и кости. При прохождении сквозь тело экспериментатора тени мелких пуговиц и других подобных предметов образовывались быстро, в то же время при выдержке от одного часа до полутора проявляются ребра, кости плеча и предплечья, как видно из прилагаемого отпечатка. Теперь имеются несомненные доказательства, что в любой части тела можно обнаружить небольшие металлические объекты и костные или известковые отложения.

Контур черепа легко проявляется при экспозиции от 20 до 40 минут. В одном случае экспозиция в 40 минут дала четкое изображение не только контура, но и глазной впадины, подбородка, скулы и носовых костей, нижней челюсти, сочленений с верхней челюстью, позвоночного столба и сочленения с черепом, плоти и даже волос. При мощном облучении головы отмечались необычные эффекты. Мне кажется, появляется сонливость и впечатление ускорения бега времени. Воздействие носит общий успокоительный характер, и я ощущал теплоту в верхней части головы. Мой помощник тоже заметил, что его клонило ко сну, а время протекало быстрее. И пусть эти удивительные проявления будут проверены людьми с более тонкой наблюдательностью, я всё же буду более склонен верить в существование материальных потоков, пронизывающих череп. Следовательно, при помощи таких удивительных приборов вероятна возможность напылять соответствующий химический препарат на любую часть тела.

Рентген скромно заявил о своих результатах, не возлагая на них слишком больших надежд. К счастью, его предостережения были напрасны, поскольку, даже имея дело всего лишь с проекциями теней, возможности применения его открытия безбрежны. Я счастлив внести свой вклад в развитие созданного им нового направления в науке.

«Electrical Review», 11 марта 1896 г.

О рентгеновских лучах (2)

Последние результаты

Редактору «Electrical Review»

Позвольте мне высказаться по поводу легкого разочарования, которое я испытал, прочитав в номере от 11 марта Вашего издания о выдающейся роли, которую Вы сочли возможным придать моей молодости и таланту, в то время как подробности рисунка 1, который, со ссылкой на отпечаток, сопровождающий мое сообщение и охарактеризованный как четкое изображение, были скромно оставлены в тени. К сожалению, я также заметил ошибку в одной из подписей к иллюстрации, тем более что я должен отнести ее на счет моего собственного текста. А именно: на странице 135 (третья колонка, седьмая строка) я утверждал: «Подобный отпечаток был получен сквозь тело экспериментатора… и т. д. с расстояния около четырех футов». Отпечаток, на который я здесь ссылаюсь, был подобен тому, что представлен на рисунке 2, тогда как пятно на рисунке 1 было получено с расстояния 18 дюймов. Я пишу это единственно ради соблюдения точности в своем сообщении, но поскольку речь идет вообще об истинности факта получения такого пятна с указанного расстояния, Ваша подпись вполне может оставаться, ибо я получаю контрастные отпечатки с расстояния 40 футов. Повторяю, 40 футов и даже больше. И это не предел. Действие на пленку столь сильно, что необходимо предпринимать меры для сохранения пластин в моей фотолаборатории, расположенной этажом выше на расстоянии 60 футов, чтобы они не портились от случайно проникших лучей во время длительной экспозиции. Несмотря на то что в ходе исследований я провел много экспериментов, казавшихся необычными, всё же нахожусь в состоянии глубокого изумления, наблюдая очень неожиданные явления, и даже более удивительные, так что я и сейчас предвижу возможность, если не сказать уверенность, по крайней мере десятикратного увеличения результативности моего аппарата! Что нам следует ожидать в таком случае? Нам, очевидно, придется иметь дело с лучеиспусканием поразительной мощности, а с проникновением в его природу интерес к этому явлению и его значение будут возрастать. Столь неожиданный результат, удивительный сам по себе, выглядел поначалу слабым и совершенно неспособным к подобному развитию, но он прекрасно иллюстрирует пример плодотворности подлинного открытия. Эти воздействия на чувствительную пленку на таком большом расстоянии я объясняю применением лампы с одним электродом, что позволяет использовать практически любое желаемое напряжение и достигать исключительно высоких скоростей испускаемых частиц. Очевидно также, что действие такой лампы на флюоресцирующий экран гораздо интенсивнее, чем при применении трубки обычного типа, и я уже накопил достаточно наблюдений, чтобы быть уверенным: в этом направлении можно ожидать значительных результатов. Я считаю открытие Рентгена, позволяющее нам с помощью флюоресцирующего экрана видеть насквозь непрозрачное вещество, еще более превосходным, чем запись звука на пластинку.

Со времени моего предыдущего сообщения в Вашем журнале я добился значительных успехов и теперь могу рассказать еще об одном важном результате. В последнее время я достиг получения изображений, применяя только отраженные лучи , демонстрируя тем самым, что рентгеновские лучи, без сомнения, обладают этим свойством. Могу привести описание одного из экспериментов. Была использована толстая медная трубка около фута длиной, к одному концу ее был плотно прижат держатель с чувствительной пластиной, покрытой, как обычно, защитным материалом. Вблизи открытого конца медной трубки под углом 45 градусов к ее оси поместили пластину из толстого стекла. Затем над стеклянной пластиной на расстоянии около 8 дюймов была подвешена лампа с одним электродом так, чтобы пучок лучей падал на пластину под углом 45 градусов и отраженные лучи проходили вдоль оси медной трубки. Экспозиция в 45 минут дала отчетливое и контрастное теневое изображение металлической трубки. Это изображение было произведено отраженными лучами, поскольку прямое действие совершенно исключалось, что доказало: даже в условиях самых серьезных испытаний с гораздо более мощными воздействиями не могло быть получено никакого отпечатка на чувствительном слое сквозь толщу меди, сравнимого с изображением трубки. Исходя из интенсивности действия и проводя сравнение с эквивалентным эффектом от воздействия прямых лучей, считаю, что в этом эксперименте приблизительно два процента прямых лучей отражались от стеклянной пластины. Надеюсь, что в скором времени буду иметь возможность составить более полный отчет по этому и другим вопросам.

В своих попытках внести скромную лепту в знание о феномене Рентгена я обнаруживаю всё больше и больше свидетельств в поддержку теории движущихся материальных частиц. Однако, не имея намерения выдвигать в настоящий момент какие-либо суждения о том, что этот факт имеет отношение к существующей ныне теории света, пытаюсь установить факт существования таких материальных потоков во всём, что касается этих, не связанных друг с другом явлений. У меня уже есть огромное количество свидетельств о бомбардировке частицами вне лампы, и потому готовлю несколько решающих испытаний, которые, надеюсь, пройдут успешно. Вычисленные скорости полностью объясняют механизм воздействия на расстоянии 100 футов от лампы, а то, что выброс частиц происходит сквозь стекло, явствует, как видно из процесса разрежения, описанного мной в предыдущем сообщении. Показательный в этом отношении эксперимент, о котором я намеревался вкратце рассказать, состоит в следующем: если мы присоединим достаточно хорошо откачанную лампу с одним электродом к клемме катушки-разрядника, мы заметим, как небольшие стримеры пробиваются сквозь стекло. Обычно такой стример прорывает изоляцию, и лампа трескается, вследствие чего вакуум ослабляется. Но если изоляцию поместить поверх электрода или если предусмотреть другие меры, препятствующие прохождению стримеров через стекло в этом месте, часто случается, что поток вырывается сквозь боковую стенку лампы, образуя микроскопическое отверстие. И тут происходит удивительная вещь: несмотря на образовавшийся канал связи с внешней атмосферой, воздух не может устремляться в колбу, пока отверстие очень маленькое. Стекло в месте пробоя может сильно нагреться — до такой степени, что станет мягким, но оно не лопнет, а, скорее, начнет

Наши рекомендации