Появление «темных персонажей»

Решающие наблюдения начали в 1997 году две очень многочисленные группы исследователей под руководством Адама Райса, Брайана Шмидта и Сола Перлмуттера (США). Уже в 1998 году были получены и опубликованы первые результаты. 20 июня 2003 года вышел тематический номер научного журнала "Science" (№ 5627) с черной обложкой, на которой едва просматривается черная же надпись "The Dark Side" (Темная сторона). Такое кокетство для журнала "Science" совершенно необычно. Журнал привел четыре статьи ведущих исследователей, которые сопоставили результаты наблюдений далеких сверхновых, темной материи и реликтового излучения (о них – в следующем разделе). Первые итоги оказались такими: постоянная Хаббла составляет 72 ± 8 км/c на каждый миллион парсеков. Возраст Вселенной 13,6 ± 1,5 миллиарда лет (еще более точное определение возраста Вселенной получено в эксперименте на спутнике WMAP – 13,7 ± 0,2 миллиарда лет). Вселенная на 72% состоит из темной энергии и на 28 ± 5% из темной массы. Все эти понятия в последние годы зрели главным образом в двух областях физики: в космологии и квантовой механике, пытающейся объединиться с теорией гравитации (она же общая теория относительности).

Скрытая (или темная) масса тоже не внезапно возникла в астрофизике. Выводы работы А. Фридмана (1922), в которой он рассматривал разные варианты кривизны мира, касались дальнейшей судьбы Вселенной. Судьба зависит от средней плотности вещества во Вселенной. Вселенная может неограниченно расширяться; расширение может остановиться; его может сменить сжатие… Два последних варианта активно рассматривались астрофизиками, причем в 80-е годы в них было включено также невообразимо быстрое расширение Вселенной (так называемая инфляция), происшедшее в первые мгновения Большого взрыва. Средняя плотность вещества во Вселенной в принципе поддавалась определению уже в середине ХХ века. Но получалось что-то странное. В 30-е годы астроном Фриц Цвикки изучал движение связанной группы галактик, каждая из которых движется настолько быстро, что должна была бы покинуть группу, так как их общее тяготение примерно в 10 раз меньше того, что могло бы их удержать. Тем не менее они остаются в составе группы. Суммарную массу звезд, газа и пыли в галактиках ученые умеют определять. Она недостаточна. Оставалось предположить, что есть еще какая-то темная масса, что-то, чего астрономы не замечают. Но почему? Именно среднюю плотность вещества, включая темную массу, астрономы надеялись вычислить из новых наблюдений очень удаленных сверхновых, сопоставляя их с другими данными, полученными из наблюдений реликтового излучения.

Реликтовое излучение

Появление «темных персонажей» - student2.ru
Рис. 5. Слева: флуктуации фона реликтового излучения, по данным спутника WMAP. Неоднородности, показанные цветом, составляют всего несколько стотысячных градуса, но они привели к новой картине мира. Справа: сахаровские колебания - угловое распределение неоднородностей фона реликтового излучения. Именно сахаровские колебания дают сведения о плоскостности или кривизне мира, о которых писал А.А. Фридман. (Переработанный рисунок из статьи М. Тегмарк «Параллельные Вселенные» // В мире науки, 2003, №8, стр. 26).

На явное несоответствие массы видимого вещества Вселенной его наблюдаемому движению указывает еще один экспериментальный результат. Это тот самый уникальный эффект, который в 1948 году был предсказан Гамовым, а соответствующим инструментом космология обзавелась немного позже, в последней трети ХХ века. В российской науке его называют реликтовым излучением, в западной – микроволновым космическим фоновым излучением. За его открытие в 1965 году астрофизики Арно Пензиас и Роберт Уилсон (США) удостоены Нобелевской премии. Те, кто знаком с радиотехникой, с интересом узнали, что возможности снижения шума в принимаемом радиосигнале не беспредельны. Даже самые совершенные антенны вместе с полезным сигналом принимают небольшой шум, который, как оказалось, приходит сразу со всех сторон. Происхождение шума поняли далеко не сразу (экспериментаторы не любят читать теоретические статьи). Оказалось, что это… бывший свет, свет остатков вспышки Большого взрыва. Когда-то он был почти таким же ярким, как свет Солнца, но светил со всех сторон. В течение 400 тысяч лет после Большого взрыва среда оставалась настолько плотной и горячей, что была непрозрачной для собственного излучения. Наконец, когда из-за расширения температура упала до 4000 градусов, среда стала прозрачной и излучение с температурой 4000 К вырвалось на свободу. То же пространство окружает нас со всех сторон и сегодня, но оно настолько расширилось, что из-за красного смещения максимум излучения сместился с 0,7 мкм (оранжевый свет) до 1 мм (радиоволны) и воспринимается как радиошум, излучаемый телом с температурой, близкой к абсолютному нулю (2,7 К). Реликтовое излучение стало особой темой космологии. Оно заменило когда-то существовавшее понятие эфира: скорость движения Солнечной системы, Земли или космического аппарата нельзя найти относительно вакуума, но можно определить относительно реликтового излучения. А нельзя ли по его неоднородностям представить, как было разбросано вещество в пространстве в мгновение Большого взрыва? Оказалось, что можно. Реликтовое излучение позволило выбрать из моделей Фридмана плоскую Вселенную. Для измерения понадобились приборы, способные уловить в реликтовом излучении ничтожные неоднородности - в стотысячные доли градуса. Неоднородности фона, по данным спутника WMAP, показаны на рис. 5 слева, а справа представлено распределение этих неоднородностей по углам. Глубокий физический смысл этой диаграммы предсказал Андрей Дмитриевич Сахаров; ее называют сахаровски ми колебаниями. Наблюдения показывают, что, во-первых, фон удивительно однороден. Во-вторых, сахаровские колебания указывают все-таки на такие неоднородности, для образования которых «обычного» вещества было явно недостаточно. Что-то непонятное и массивное уже тогда присутствовало в рождающейся Вселенной.



Наши рекомендации