Цикл абсорбционной холодильной установки
Рабочим веществом в абсорбционной машине является бинарный раствор, т.е. смесь, состоящая из двух полностью растворимых друг в друге веществ, причем эти вещества имеют резко различные температуры кипения.
Вещество с меньшей температурой кипения является холодильным агентом, а с более высокой температурой кипения – абсорбентом.
Основные элементы абсорбционной холодильной установки – парогенератор 1 с конденсатором 2 и абсорбер 5 – предназначены для непрерывного воспроизводства жидкости высокой концентрации, поступающей затем в испаритель 4 на парообразование, и жидкости низкой концентрации, служащей для абсорбции (поглощения) концентрированного пара.
Для испарения жидкости к парогенератору 1 подводится тепло q0 при температуре t1, которая должна быть не ниже температуры кипения при данном давлении.
Пар поступает в конденсатор 2, где конденсируется, отдавая тепло конденсации q/1 охлаждающей воде, имеющей температуру окружающей среды. Образовавшаяся жидкость высокой концентрации дросселируется в регулирующем вентиле 3 от давления p1 до давления р2. При дросселировании температура жидкости понижается до температуры более низкой, чем в охлаждаемом помещении.
После этого жидкость поступает в находящийся в охлаждаемом помещении испаритель 4. Вследствие того, что температура жидкости меньше температуры охлаждаемого помещения, жидкость испаряется, поглощая тепло q2. Образующийся при этом пар, имеющий температуру t2 и давление р2, поступает из испарителя в абсорбер 5, где абсорбируется при температуре t0 > t2, отдавая тепло абсорбции q//1 охлаждающей воде.
При кипении жидкости в генераторе концентрация холодильного агента в жидкости понижается, а в абсорбере вследствие поглощения концентрированного пара, наоборот, повышается. Для поддержания концентраций в обоих аппаратах неизменными, между ними осуществляется циркуляция либо при помощи насоса 6, либо естественным путем за счет разности плотностей растворов разной концентрации. По пути из генератора в абсорбер жидкость дросселируется регулирующим вентилем 7.
Так как затрата энергии в абсорбционной холодильной машине производится в виде тепла (работа, затрачиваемая на привод насоса, незначительна), то эффективность ее действия характеризуется коэффициентом использования тепла, равным отношению количества тепла, отнятого от охлаждаемого объекта q2 , к затраченному на это теплу q0 .
С термодинамической точки зрения идеальная абсорбционная холодильная установка может рассматриваться как совокупность трех тепловых резервуаров.
В первый резервуар (генератор) поступает тепло q0 (пл. 1-2-3-4-1) при наивысшей температуре Т1;
во второй резервуар (испаритель) вводится тепло q2. (пл. 4-5-6-7-4) при наинизшей температуре Т2;
из третьего резервуара (конденсатора и абсорбера) отводится тепло q1 = q1+q//1 (пл. 1-8-9-7-1) при температуре охлаждающей воды Т0, равное сумме подведенных теплот, т.е.
,
где q/1 – тепло, отведенное в конденсаторе; q//1 – тепло, отведенное в абсорбере.
27. Теплопередача. Основные понятия и определения.
Рассмотрим теплопередачу через однородную и многослойную плоские стенки.
Теплопередача включает в себя
- теплоотдачу от более горячей жидкости к стенке,
- теплопроводность в стенке,
- теплоотдачу от стенки к более холодной подвижной среде.
Заданы толщина δ плоской однородной стенки, коэффициенты теплопроводности стенки λ, температуры окружающей среды tж1 и tж2, а также коэффициенты теплоотдачи α1 и α2;
будем считать, что величины tж1, tж2, α1 и α2 постоянны и не меняются вдоль поверхности.
При заданных условиях необходимо найти тепловой поток от горячей жидкости к холодной и температуры на поверхностях стенки.
Плотность теплового потока от горячей жидкости к стенке
При стационарном тепловом режиме тот же тепловой поток пройдет теплопроводностью через твердую стенку
Тот же тепловой поток передается от второй поверхности стенки к холодной жидкости за счет теплоотдачи
Эти уравнения можно записать в виде системы
Плотность теплового потока, Вт/м2
Обозначим
Величина k имеет ту же размерность, что и α, и называется коэффициентом теплопередачи.
Коэффициент теплопередачи k характеризует интенсивность передачи теплоты от одной жидкости к другой через разделяющую их стенку и численно равен количеству теплоты, которое передается через единицу поверхности стенки в единицу времени при разности температур между жидкостями в один градус.
Величина, обратная коэффициенту теплопередачи, называется полным термическим сопротивлением теплопередаче.
– термическое сопротивление теплоотдачи от горячей жидкости к поверхности стенки; – термическое сопротивление теплопроводности стенки;
– термическое сопротивление теплоотдачи от поверхности стенки к холодной жидкости.
В случае многослойной стенки нужно учитывать термическое сопротивление каждого слоя:
или
Плотность теплового потока через многослойную стенку, состоящую из n слоев
Тепловой поток Q, Вт, через поверхность F твердой стенки
Рассмотрим однородную цилиндрическую стенку (трубу) с постоянным коэффициентом теплопроводности λ. Заданы постоянные температуры подвижных сред tж1 и tж2 и постоянные значения коэффициентов теплоотдачи на внутренней и наружной поверхностях труб α1 и α2.
Необходимо найти ql и tc. Будем полагать, что длина трубы велика по сравнению с толщиной стенки. Тогда потерями теплоты с торцов трубы можно пренебречь.
Для стационарного режима теплопередачи можно написать
Представим эти уравнения следующим образом
Отсюда следует
Обозначим
Величина kl называется линейным коэффициентом теплопередачи; измеряется в Вт/(м·К). Он характеризует интенсивность передачи теплоты от одной подвижной среды к другой через разделяющую их стенку.
Значение kl численно равно количеству теплоты, которое проходит через стенку длиной 1 м в единицу времени от одной среды к другой при разности температур между ними 1 град.
Величина Rl=1/kl, обратная линейному коэффициенту теплопередачи, называется линейным термическим сопротивлением теплопередаче:
здесь Rl измеряется в м·К/Вт.
– термические сопротивления теплоотдаче на соответствующих поверхностях;
– термические сопротивления теплопроводности стенки.