Синхронные машины. Обратимость СМ. Устройство СМ. Работа СМ в режиме генератора.
Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.
Обратимость электрических машин вызвана одинаковым устройством преобразователей электрической энергии в механическую и механической в электрическую. Таким образом, электрические машины взаимозаменяемы: любой электродвигатель может использоваться в качестве генератора и наоборот.
Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое исполнение, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор.
Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.
Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока применяются ферромагнитные сердечники ротора и статора. Электротехническая сталь обладает рядом интересных свойств. В том числе она имеет повышенное содержание кремния, чтобы повысить её электрическое сопротивление и уменьшить тем самым вихревые токи.
Обычно синхронные генераторы выполняют с якорем, расположенным на статоре, для удобства отвода электрической энергии. Поскольку мощность возбуждения невелика по сравнению с мощностью, снимаемой с якоря (0,3...2%), подвод постоянного тока к обмотке возбуждения с помощью двух контактных колец не вызывает особых затруднений. Принцип действия синхронного генератора основан на явлении электромагнитной индукции; при вращении ротора магнитный поток, создаваемый обмоткой возбуждения, сцепляется поочередно с каждой из фаз обмотки статора, индуцируя в них ЭДС. В наиболее распространенном случае применения трехфазной распределенной обмотки якоря в каждой из фаз, смещенных друг относительно друга на 120 градусов, индуцируется синусоидальная ЭДС.
Частота индуцируемой ЭДС f [Гц] связана с частотой вращения ротора n[об/мин] соотношением:
где p — число пар полюсов ротора.
35. Работа СМ в режиме двигателя. Схема замещения СД. Векторная диаграмма. Уравнение электрического состояния СД.
Как и все электрические машины, синхронные машины обратимы. Синхронный двигатель по своей конструкции принципиально не отличается от синхронного генератора. В случае идеальной синхронизации (Uс = Eг, fс = fг) подключённая к сети синхронная машина не отдаёт энергию в сеть и не потребляет её из сети (Uс и fс – напряжение и частота сети, Eг и fг ЭДС и частота генератора). Покрытие потерь в машине осуществляется за счёт первичного двигателя. Изменение момента, приложенного к валу машины, приведёт к изменению угла между полем ротора и суммарным магнитным полем машины, не нарушая при этом синхронную частоту вращения. При идеальной синхронизации угол равен нулю. Чтобы заставить генератор отдавать энергию в сеть, надо увеличить вращающий момент со стороны первичного двигателя.
Т-образная схема замещения. Полная схема замещения асинхронной машины при вращающемся роторе отличается от схемы замещения асинхронной машины с заторможенным ротором только наличием в цепи ротора активного сопротивления, зависящего от нагрузки . Эту схему замещения называют Т-образной.Г-оразная Можно упростить вычисления, преобразовав Т-образную схему замещения в Г-образную.
Уравнение электрического состояния СД.
E2=I2R2+jI2X2 X2=2πf2L2 E2н=jI2X2+I2R2/S
Ia=I2cosα-из этого следует что пусковой М мал.