Темная энергия, темная материя

Dark energy/dark matter

Главная теория дает нам подробное, глубинное понимание практически всего вещества, которое мы можем найти на Земле и поблизости от нее. Это «нормальное» или «обычное» вещество состоит из u- и d -кварков , цветных глюонов , фотонов и электронов , а также относительно неплотного потока нейтрино . Однако астрономические наблюдения показывают, что Вселенная в целом содержит другие виды вещества, которые составляют большую часть ее общей массы. Природа этого дополнительного вещества в настоящее время точно не известна, но мы можем систематизировать известные факты в простом и показательном виде.

• Обычное вещество дает примерно 5 % от общей массы Вселенной. Оно очень неравномерно распределено в виде галактик (которые затем разделяются на газовые облака, звезды и планеты), а между ними имеются большие области, практически лишенные обычного вещества.

• Темная материя, известная также как скрытая масса, составляет около 27 % общей массы Вселенной. Она тоже распределена неравномерно, но не настолько, как обычное вещество. Астрономы обычно говорят, что галактики окружены более диффузными гало из темной материи, но с учетом соотношения их масс было бы более правомерно сказать, что галактики – это концентрированные вкрапления в облаках темной материи. Темная материя очень слабо взаимодействует с обычным веществом, включая и свет. Следовательно, она не темная в общепринятом смысле, а скорее прозрачная.

• Темная энергия составляет около 68 % общей массы Вселенной. Она распределена равномерно, как если бы была глобальной плотностью массы, связанной с самим пространством. Есть свидетельства того, что эта плотность была постоянна во времени, на протяжении миллиардов лет. Как и темная материя, темная энергия очень слабо взаимодействует с обычным веществом, и она скорее прозрачная, чем темная.

Выводы о существовании темной материи и темной энергии и об их распределении в пространстве сделаны в результате наблюдений за обычным веществом. Мы обнаруживаем, что во многих ситуациях в астрофизике и в космологии мы можем объяснить движение обычного вещества, используя известные законы физики (Главную теорию) только в том случае, если предположим существование дополнительных источников массы помимо обычного вещества. Другими словами, движение обычного вещества под действием его собственной гравитации по нашим расчетам не согласуется с его наблюдаемым движением.

Это расхождение в принципе может быть следствием несостоятельности общей теории относительности, но, несмотря на многие попытки, не удалось создать никакой другой привлекательной теории (даже если допустить здесь очень низкую планку «привлекательности»).

В попытках улучшить Главную теорию довольно независимо друг от друга были выдвинуты предположения о существовании новых форм материи, которые могли бы подойти на роль темной материи. Для этого годятся и аксионы , и новые частицы, предложенные теориями суперсимметрии : они достаточно стабильны и слабо взаимодействуют с обычным веществом. Более того, согласно расчетам, они могли бы быть рождены во время Большого взрыва примерно в нужном количестве, а также могли бы распределиться как раз так, как мы это наблюдаем. Эти возможности в данный момент являются предметом очень активных экспериментальных исследований.

Темная энергия имеет свойства, которых можно ожидать от «космологического члена» Эйнштейна, а также от плотностей энергии, связанных с полем Хиггса , спонтанной активностью квантовых полей и еще несколькими более или менее правдоподобными источниками. Возможно, что независимый вклад в темную энергию дают сразу несколько таких эффектов, причем какие-то могут вносить положительный, а какие-то отрицательный вклад в общую сумму. В отличие от ситуации с темной материей, существующие теоретические идеи о темной энергии расплывчаты, и их сложно фальсифицировать .

Здесь стоит заметить, что современная проблема темной материи и темной энергии имеет два выдающихся исторических прецедента. Трудоемкие работы в области небесной механики , основанной на теории гравитации Ньютона, к середине XIX в. выявили два небольших расхождения между расчетами и наблюдениями. Одно касалось движения Урана, другое – Меркурия. Проблема Урана была разрешена с помощью своего рода «темной материи». Урбен Леверрье и Джон Коуч Адамс предположили, что его избыточное ускорение вызвано гравитационной силой, исходящей от новой, до сих пор неизвестной планеты, чье положение они могли рассчитать. Необходимая планета – Нептун – была действительно обнаружена в нужном месте! Трудность с Меркурием разрешилась, когда общая теория относительности Эйнштейна заменила теорию гравитации Ньютона. Новая теория, предложенная совершенно по другим и более глубоким причинам, дала немного отличные предсказания для орбиты Меркурия, и ее предсказания согласуются с наблюдениями.

Доводы с антропным привкусом применялись как к проблеме темной энергии, так и к проблеме темной материи, причем аргументация строилась похожим образом в обоих случаях:

• Часть Вселенной, которую мы можем сейчас наблюдать, – всего лишь малая доля большей структуры, которую иногда называют мультивселенной . (Заметим, что с течением времени область, доступная для наблюдения, расширяется из-за конечной скорости света.)

• Физические условия в других, удаленных, частях мультивселенной могут разниться. В частности, плотность темной энергии, или темной материи, может быть другой.

• В областях, где плотность темной энергии или темной материи, резко отличается от того, что мы наблюдаем в нашей Вселенной, не может появиться разумная жизнь.

• Поэтому могут наблюдаться лишь такие значения этих плотностей, которые близки к наблюдаемым нами.

Второй и третий шаг этих рассуждений в настоящее время являются спорными, поэтому эти идеи остаются умозрительными. Но, поскольку наши знания о фундаментальных законах и наши способности постичь их следствия совершенствуются, с логической точки зрения возможно, что такие идеи станут общепринятыми. Если это случится, мне кажется, что эта цепочка рассуждений окажется убедительной. Это будет означать удивительное открытие: главные черты наблюдаемого нами мира – а именно плотности темной энергии и/или темной материи – определяются не абстрактными принципами динамики или симметрии , но отбором , вроде отбора в биологии.

Теорема (закон Гаусса)

Gauss's law

На самом деле существует две[115]теоремы Гаусса с очень похожими формулировками.

Согласно теореме Гаусса для электрического поля , поток электрического поля через любую замкнутую поверхность равен количеству электрического заряда , заключенного внутри этой поверхности.

Согласно теореме Гаусса для магнитного поля, поток магнитного поля через любую замкнутую поверхность равен нулю. Иначе говоря, этот поток равен количеству магнитного заряда, заключенного внутри этой поверхности, а такого заряда в Природе не обнаруживается.

Эти теоремы Гаусса увековечены в двух уравнениях Максвелла .

Теорема Пифагора

Pythagorean theorem

Теорема Пифагора была опережающим свое время поразительным открытием в геометрии. Теорема Пифагора гласит, что квадраты длин двух более коротких сторон прямоугольного треугольника составляют квадрат длины самой длинной стороны (гипотенузы). Она обсуждается подробно, с чертежами, в основном тексте.

Теория Янга – Миллса

Yang-Mills theory

В 1954 г. Чжэньнин Янг и Роберт Миллс открыли, как создать новый большой класс теорий, в которых глобальная симметрия пространства свойств обобщена до локальной симметрии . В их честь теории такого вида часто называют теориями Янга – Миллса. Наши Главные теории сильных и слабых взаимодействий включают в себя подобную конструкцию.

Переходя от специальной теории относительности к общей теории относительности в 1915 г., Эйнштейн обобщил галилееву симметрию от глобальной до локальной. Грубо говоря, Янг и Миллс научили нас, как сделать этот вид обобщения, от глобальной симметрии до локальной, для широкого класса возможных групп симметрии, применимых для частиц.

В основном тексте мы сравниваем переход от глобальной симметрии к локальной с переходом от обычной геометрической перспективы, которой занимается проективная геометрия , к более гибким возможностям анаморфного изображения.

Ток

Current

Электрический ток – мера движения электрического заряда из одного места в другое[116]. Самый простой, идеализированный случай электрического тока связан с движением одного электрона . В этом случае электрический ток равен электрическому заряду электрона, умноженному на его скорость , в мгновенном положении электрона и нулю в остальных точках пространства. Если скорость электрона остается постоянной, ток постоянен по величине, но его местоположение движется вместе с электроном.

В ситуации, когда у нас есть много электронов вместе с другими электрически заряженными частицами, полный электрический ток равен сумме всех электрических токов, вызванных каждой из этих частиц по отдельности (и во всех случаях это заряд, умноженный на скорость). Величина этого фундаментального «микроскопического» тока[117]определена в каждой точке пространства и в любой момент времени. Другими словами, электрический ток – это векторное поле .

Величина микроскопического электрического тока, определенная таким образом, строго равна нулю, если движущихся электрически заряженных частиц нет, и беспорядочно меняется в пространстве и времени. Обычно бывает удобно для практического применения усреднять величины по областям пространства, которые содержат множество электронов. Таким способом мы определяем усредненный электрический ток, который гладко меняется в пространстве и времени. Обычно при обсуждении электрических токов в электрических цепях или в электроприборах такое усреднение считается само собой разумеющимся.

Сходным образом мы можем говорить о токах, связанных с перемещением других видов зарядов, таких как два вида слабых цветовых зарядов слабого взаимодействия или трех сильных цветовых зарядов сильного взаимодействия . Также имеются (если заменить в определении «заряд» на «массу») массовые токи , связанные с перемещением массы, потоки энергии , связанные с перемещением энергии, и т. д. В общеупотребительном языке мы можем использовать слово «ток»[118]для описания потоков воды и при этом имеем в виду массовый ток.

Тон, чистый тон

Tone/pure tone

Выражение «чистый тон» в этой книге означает простое волновое возмущение, которое является периодическим как в пространстве, так и во времени. (Здесь слово «простое» имеет определенное техническое значение: форма волны является синусоидальной, но здесь я не буду останавливаться на этом подробно. В примечаниях в конце книги имеются две легкодоступные ссылки.)

Самые важные примеры чистых тонов для нас касаются звуковых волн и электромагнитных волн (включая главным образом свет). В звуковых волнах изменению подвергаются давление и плотность воздуха; в электромагнитных волнах – электрические и магнитные поля.

Глубокое и приятное озарение, которое приходит в результате научного исследования Природы, состоит в том, что чистые тона , определенные вышеприведенным математическим/физическим способом, соответствуют простым чувственным восприятиям. Чистые звуковые тона легко создать с помощью электроники, и они могут быть знакомы вам по проверкам слуха или благодаря примитивным устройствам электронной музыки (какие, например, иногда встраивают в поздравительные открытки) или по камертонам. Чистые визуальные тона – это спектрально чистые цвета, которые появляются в радуге или в солнечном свете, преломленном призмой, как в экспериментах Ньютона. Эти два взаимодополняющих взгляда на чистые тона – с точки зрения восприятия и с точки зрения научных концепций – красиво иллюстрируют столь желаемое нами соответствие

Реальное ↔ Идеальное.

Тона , которые издают более традиционные музыкальные инструменты, когда вы извлекаете единственную «ноту», далеки от чистых. Подробное описание изменяется от инструмента к инструменту, но во всех случаях нота содержит много чистых тонов, звучащих одновременно с различной силой. Самым мощным из них является чистый тон, который дает имя этой ноте, но качество музыкального звука, тембр, который отличает различные инструменты друг от друга, в значительной степени определяется дополнительными тонами, так называемыми обертонами .

Эта тема обсуждается более подробно в основном тексте. Также к этой теме имеет отношение словарная статья о Спектрах .

Наши рекомендации