Упрощение способствует росту
Ньютоновский метод анализа и синтеза имеет и другое название – редукционизм (упрощение). При этом сложный объект или предмет «упрощается» до чего-то более простого, если было показано или считается оправданным, что более сложные объекты можно анализировать через их составные части, а затем синтезировать их поведение из поведения этих частей.
Редукционизм имеет дурную славу, и не только потому, что «редукционизм» – так себе словечко. Самое очевидное значение этого слова наводит на мысль, что, когда вы что-то поняли с помощью метода анализа и синтеза, вы каким-то образом упростили его. Ваш насыщенный и сложный объект теперь «не более чем» сумма его частей. Если уж на то пошло – и здесь, когда дело близко касается человека, это начинает раздражать, – возможно, что и вы сами, и те, кого вы любите, являются «не более чем» собранием молекул, просто делающих свое дело и ведущих себя в соответствии с математическими правилами.
Поэты и художники романтической эпохи в ответ на триумф ньютоновской «редукционистской» науки выражали свое волнение по поводу присущего ей мотива «не более чем». Джон Китс, самый лирический из всех лирических поэтов, писал:
…Любое диво
От философии бежит пугливо!
Вот радугу в лазури зиждет Бог –
Но семь волшебных красок в каталог
Внесли и волшебство сожгли дотла.
Философ свяжет ангелу крыла,
Определит размер чудес и вес,
Очистит от видений грот и лес,
Погубит радугу…[31]
Уильям Блейк протестовал против ограниченного кругозора редукционизма (цветная вклейка K). На этой картине изображен Исаак Ньютон за работой и отражаются противоречивые чувства Блейка по его поводу. Его Ньютон – это фигура, преисполненная чрезвычайной сосредоточенности и целеустремленности, не говоря уже о сверхчеловеческом строении тела. В то же время он изображен с потупленным взором, потерянный в абстракциях и буквально повернутый спиной к необычному красочному пейзажу. Тем не менее Блейк (как и Китс) признавал, что миром правит математический порядок (вклейка L). В сложной мифологии Блейка изображенный здесь Уризен[32] – это двойственная фигура Отца, который одновременно несет жизнь и ограничивает ее. Трудно не заметить некоторое сходство с предыдущей картиной. Не является ли Ньютон толкователем Уризена или его реинкарнацией?
Хорошая картина действеннее вызывает эмоциональный отклик, чем назидательные разглагольствования. Перед нами в самом деле «картина, стоящая тысячи слов». Пожалуйста, на секунду не обращайте внимания на подпись, когда вы откроете вклейку М, а просто рассмотрите поразительно красивый шедевр абстрактного искусства.
Хорошо, а теперь прочтите подпись (если вы этого еще не сделали). Разве знание того, что эта картина может быть «редуцирована» до чистой математики, умаляет ее красоту? Для меня и, надеюсь, для вас открытие того, что простая математика может закодировать эту структуру, только прибавляет ей красоты. Конечно, она по-прежнему выглядит картиной. Но теперь вы также можете своим мысленным взором увидеть ее с другой точки зрения, как воплощение концепций. Она и Реальна, и Идеальна.
И наоборот, красота картины увеличивает красоту математических построений. Прослеживать логику создания программы, не видя, что можно получить, – это не очень увлекательное упражнение. Когда вы видите, что должно получиться на выходе, тот же самый процесс становится интеллектуальной загадкой, позволяющей достичь совершенства.
Реальное более стремится быть Идеальным, а Идеальное – Реальным.
Что касается этого фрактального изображения, то – более обобщенно – понимание не принижает опыт, скорее оно добавляет альтернативные точки зрения. В духе дополнительности мы можем наслаждаться любой из альтернатив по очереди, если не можем наслаждаться сразу всеми.
Кстати, могу побиться об заклад, что Китс не одолел научную теорию радуги. Если бы он справился с ней, мы бы прочитали стихи, воспевающие ее красоту. Потому что Джон Китс также написал эти строки:
Пусть старость поколения сменяет!
Другому скажешь на пути бескрайнем:
В прекрасном – правда, в правде – красота.
И это – мудрость высшая земная[33].
Начиная действовать
В динамической точке зрения на мир существует еще один аспект, который привел Ньютона к Богу и поставил вопросы, до сих пор еще не разрешенные.
Динамические законы – это законы движения. Они связывают состояние мира в один момент времени с его состояниями во все остальные моменты. Если мы знаем состояние в один момент времени, мы можем предсказать будущее или сделать экстраполяцию в прошлое. Говоря конкретно, в механике Ньютона, если нам известны положения, скорости и массы всех частиц в один момент времени и силы, которые действуют среди них, мы можем вывести их положения и скорости (и массы, которые не меняются) в любые другие моменты в результате расчета. Эти величины определяют состояние мира, потому что в механике Ньютона они обеспечивают полное описание материи.
Существуют серьезные практические трудности, которые мешают реальному представлению этих расчетов, что мог испытать на себе любой, кто изучает погоду. На свете есть великое множество частиц, и совершенно нереально определить все их координаты и все их скорости. Даже если бы вы могли это сделать и знали бы точно все законы сил, действующих на них, требуемые расчеты заставили бы ужаснуться любой мозг, который только можно себе представить. Вдобавок ко всему главный результат теории хаоса состоит в том, что маленькие ошибки по всей линии – в изначальных условиях, в законах действия сил или в численных расчетах – имеют тенденцию со временем превращаться в большие ошибки.
Если не принимать во внимание практические трудности, то главная мысль состоит в том, что вам нужна точка отсчета! Динамические уравнения не самодостаточны. На нашем профессиональном жаргоне мы говорим, что они требуют начальных условий . Чтобы начать обсчитывать поведение мира с помощью динамических уравнений, вы должны вначале определить состояние мира в один момент времени, как информацию на входе.
(Конечно, если вас интересует что-то более маленькое, чем весь мир, и вы действительно можете изолировать предмет изучения от всего остального, вам нужно только знать состояние вашей подсистемы. Для простоты я продолжу говорить о «мире».)
Описание мира можно разделить на две части:
1. Динамические уравнения.
2. Начальные условия.
Из регулярности и порядка Солнечной системы, где все планеты обращаются вокруг Солнца по орбитам, очень близким к круговым, все примерно в одной плоскости, все в одном направлении, Ньютон в «Общем поучении», которое завершает «Начала», предположил, что первоначальные условия были разумно упорядочены:
Такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе, как по намерению и власти могущественного и премудрого существа[34].
Сегодня у нас есть более земные, физические основополагающие идеи о происхождении Солнечной системы, но более серьезные вопросы остаются. Хотя механика Ньютона как фундаментальная теория была вытеснена иными теориями, эта ее черта так и сохранилась. У нас все еще есть динамические уравнения, и они по-прежнему требуют начальных условий. Наше описание мира делится на две части: динамика и начальные условия. Для первого у нас есть великолепная теория, но для второго – только эмпирические наблюдения и неполные, более или менее достоверные спекуляции.
Если мы окинем Вселенную, всю реальность, в пространстве-времени, развернутом как под взглядом Бога, то мы придем к современной форме неизменного единства Парменида. Великий математик и физик XX в. Герман Вейль, чьи книги очень много значили для моего образования, сформулировал это таким образом, что я считаю эти строки достойными занять свое место среди самых прекрасных и самых глубоких высказываний в мировой литературе:
Объективный мир просто есть , он не случается . Лишь для взора моего сознания, карабкающегося по мировой линии жизни моего тела, порождается часть мира как образ, плывущий в пространстве и непрерывно меняющийся во времени[35].
Если Парменид и Вейль правы и пространство-время в целом является первичной реальностью, то мы должны стремиться к фундаментальному описанию их в целостности. И в этом описании не будет места для начальных условий.
Максвелл I: Эстетика Бога
Настоящая современная физика началась в 1864 г. со статьи Джеймса Клерка Максвелла «Динамическая теория электромагнитного поля». В ней впервые можно найти уравнения, которые появляются и в сегодняшней Главной теории.
Эти уравнения – уравнения Максвелла – изменили многое.
Они превратили пространство из хранилища в материальную среду – нечто вроде космического океана. Перестав быть просто вакуумом, пространство наполнилось потоками энергии, которые управляют миром.
Уравнения Максвелла дали нам совершенно новое понимание того, что представляет из себя свет, и предсказали существование неожиданных форм излучения, которые являются новыми видами «света». Они прямо привели к изобретению радио и вдохновили на создание нескольких других важных технологий.
Уравнения Максвелла также знаменуют собой большой прогресс в поисках ответа на наш Вопрос, поскольку они демонстрируют красивые идеи, глубоко воплощенные в мире. Эта красота проистекает из множества источников: из способа, которым они были открыты, из их формы и из их силы, породившей другие отличные идеи.
• Красота как инструмент: для Максвелла воображение и игра, ведомые ощущением математической красоты, были главными инструментами открытия, и он доказал, что эти инструменты работают хорошо!
• Красота как опыт: уравнения Максвелла могут быть представлены наглядно, на языке потоков. В таком виде они выглядят как некий танец. Я часто мысленно представляю их как танец понятий сквозь пространство и время, и это настоящее удовольствие. Даже при первом взгляде на них уравнения Максвелла оставляют ощущение красоты и равновесия. Как и воздействие более общепринятых форм искусства, это впечатление легче воспринять, чем объяснить. Как ни парадоксально, но существует слово, описывающее красоту, которую невозможно выразить словами, – «непередаваемо». Испытав непередаваемую красоту уравнений Максвелла, любой был бы разочарован, если бы они оказались неправильны. Примерно в такой же ситуации оказался Эйнштейн, когда его спросили, может ли его общая теория относительности оказаться ошибочной, причем с надежными тому доказательствами. «Тогда мне будет жаль милостивого Бога!» – ответил Эйнштейн.
• Красота и симметрия: глубокое понимание уравнений Максвелла, для которого потребовалось несколько десятилетий после того, как открытие было сделано, привело к дополнительному, более интеллектуально точному взгляду на их красоту. Это очень симметричная система уравнений – в точном математическом смысле этого слова, как мы обсудим далее. Уроки, которые можно извлечь из уравнений Максвелла, – что уравнения могут демонстрировать симметрию и что Природа любит использовать такие уравнения – ведет нас к Главной теории, и, возможно, дальше.
Так давайте откроем наше сознание их духу!
Атомы и пустота
Физика Ньютона оставляла пространство пустым, и этим он был недоволен. Его закон всемирного притяжения постулировал существование сил притяжения, которые действуют немедленно, без какой-либо задержки во времени, между телами, разделенными пространством. Более того, величина этих сил зависит от удаления тел и падает пропорционально квадрату расстояния между ними. Но если пространство, где нет тел, – это просто ничто, то каким образом сила передается? Как она перепрыгивает эту пустоту? И почему величина силы зависит от того, сколько именно «ничего» между телами?
Ньютон чувствовал, что его собственная теория ведет к этим вопросам, но ответов он не нашел. Не потому, что мало пытался, – в своих неопубликованных записных книжках Ньютон исписал множество страниц, размышляя над альтернативными идеями притяжения, но ничто не могло сравниться с законом, который он сам в частной переписке называл абсурдом:
Предполагать… что тело может действовать на другое на любом расстоянии в пустом пространстве, без посредства чего-либо передавая действие и силу, это, по-моему, такой абсурд, который немыслим ни для кого, умеющего достаточно разбираться в философских предметах[36].
Ньютону пришлось также хоть и с опаской, но использовать пустоту в своих работах по свету. Его частицы света двигаются по прямым линиям через пространство, в отсутствии какой-либо материи, что очень напоминает доктрину античного атомизма, которую поэтически выразил Лукреций:
Всю, самоё по себе, составляют природу две вещи:
Это, во-первых, тела, во-вторых же, пустое пространство…[37]
При этом в самом конце «Начал» мы находим это выражение веры или тоски, которое кажется принадлежащим другой книге:
Теперь следовало бы кое-что добавить о некотором тончайшем эфире, проникающем все сплошные тела и в них содержащемся, коего силою и действиями частицы тел при весьма малых расстояниях взаимно притягиваются, а при соприкосновении сцепляются, наэлектризованные тела действуют на бóльшие расстояния, как отталкивая, так и притягивая близкие малые тела, свет испускается, отражается, преломляется, уклоняется и нагревает тела, возбуждается всякое чувствование, заставляющее члены животных двигаться по желанию, передаваясь именно колебаниями этого эфира от внешних органов чувств и от мозга мускулам. Но это не может быть изложено вкратце, к тому же нет и достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны[38].
В последующие десятилетия физика, основанная на идее пустоты, шла от одного научного триумфа к другому. Более точные наблюдения движения Луны, приливов и движения комет идеально согласовывались с более точными расчетами, основанными на законах Ньютона. Удивительно, но измерения и электрических сил (между заряженными телами), и магнитных сил (между магнитными полюсами) выявили, что они следуют той же самой схеме, что и гравитационное притяжение: они взаимодействуют через пустое пространство и уменьшаются пропорционально квадрату расстояния. (Сила становится слабее в четыре раза, когда расстояние увеличивается вдвое, а когда расстояние увеличивается втрое – слабее в девять раз и т. д.)
Последователи Ньютона вскоре забыли о его сомнениях. Они стали «более ньютонианцами», чем сам Ньютон. Его резко отрицательное отношение к пустоте было сведено к философским или, по сути, теологическим предрассудкам и в смущенном молчании обходилось. Новые ортодоксы ставили своей целью описать все силы в физике и в перспективе – в химии таким же образом, как Ньютон описал притяжение, т. е. как силы, действующие на расстоянии, с интенсивностью, зависящей от расстояния. Физики, связанные с математикой, изобретали тщательно разработанные математические инструменты, чтобы с успехом пользоваться полезными следствиями такого рода законов. Казалось, надо лишь сформулировать еще несколько связанных с силами законов – и со всей этой историей будет покончено.
Не пустить пустоту
Майкл Фарадей родился в Англии. Он был третьим ребенком в христианской сектантской семье. Отец его был кузнецом. Майкл так и не получил формального образования. В течение семи лет в подростковом возрасте Фарадей был учеником лондонского переплетчика. Тогда его стали завораживать некоторые книги, которые проходили через его руки, особенно те, в которых говорилось о самосовершенствовании и о науке. Посещая публичные лекции популярного химика Хамфри Дэви и ведя тщательные записи, Фарадей привлек внимание Дэви и был принят на работу в качестве его ассистента. Вскоре он сделал свои собственные открытия… И вошел в историю.
Фарадей так и не продвинулся далеко в математике. Он знал кое-что из алгебры и немного из тригонометрии, не более того. Фарадей не был готов воспринимать существующие («ньютоновские») математические теории электричества и магнетизма, он разработал свои собственные понятия и представления. Вот как Максвелл описывает его результаты:
Фарадей своим мысленным оком видел силовые линии, пронизывающие все пространство. Там, где математики видели центры напряжения сил дальнодействия, Фарадей видел промежуточный агент. Где они не видели ничего, кроме расстояния, удовлетворяясь тем, что находили закон распределения сил, действующих на электрические флюиды, Фарадей искал сущность реальных явлений, протекающих в среде[39].
Ключевое понятие здесь – это силовые линии. Их значение более понятно, если представить его не в словах, а в образах – смотрите илл. 20.
Металлические опилки, свободно двигающиеся на тонком листе бумаги, под воздействием стержневого магнита ведут себя поразительным образом. Они выстраиваются в линии и превращаются в заполняющую все пространство систему кривых. Это и есть силовые (магнитные) линии Фарадея.
Основанная на пустоте теория сил, действующих на расстоянии (дальнодействия), без проблем объясняет этот опыт: частички железа испытывают на себе силу, исходящую от двух полюсов магнита и воздействующую через пустое пространство, и выстраиваются соответственно. Силовые линии – это неожиданно появляющийся, практически случайный побочный результат действия более глубоких и более простых базовых принципов.
Но объяснение Фарадея было другим, более интуитивным. Согласно Фарадею, металлические опилки просто принимают форму заполняющей пространство среды, которая существует независимо от того, помещены ли в нее сами опилки. Эти линии и представляют суть магнетизма.
Магнит вносит возмущение в эту среду или, как мы должны сказать, следуя за Фарадеем и Максвеллом, в этот флюид, и опилки ощущают это возбужденное состояние среды посредством давления, которое тянет и толкает их.
Илл. 20. Силовые линии Фарадея становятся видимыми
Мы можем провести параллель с более знакомым флюидом – нашей атмосферой около поверхности Земли. Она окружает нас, заполняет пространство. Если атмосфера приходит в движение, мы говорим, что дует ветер. Ветра невидимы сами по себе, но действуют своей силой на куда более видимые материальные тела, такие как флюгеры, птицы или облака. Если мы представим себе, что воздух приводится в движение вентилятором, и используем систему флюгеров, чтобы определить, как именно, то ориентация отдельных флюгеров покажет нам атмосферные «силовые линии» почти так же, как и металлические опилки Фарадея. В этом случае, конечно, флюгеры будут выстраиваться в соответствии с направлением местного воздушного потока (или ветра).
Продолжив эту аналогию, мы можем в воображении снабдить наши флюгеры устройствами, измеряющими скорость движения воздуха (анемометрами), чтобы определить одновременно направление и скорость ветра. Мы можем сделать это в любой точке пространства и в любое время. Таким образом мы определим поле скоростей, которое заполняет и пространство, и время.
Поле скоростей ветра есть зашифрованное представление возбужденного состояния флюида, а именно – воздуха.
Фарадей предположил, что та же самая логика применима к магнетизму, а также – к электричеству. Согласно Фарадею, электрически заряженное пробное тело во время опыта ведет себя так же, как и комбинация флюгера с анемометром, позволяя определить состояние электрического поля. Пробное тело испытывает на себе действие силы, зависящей от возбужденного состояния электрического флюида – «электрического ветра», так сказать, – в определенном месте и времени. Разделив силу, которую испытывает пробное тело, на его электрический заряд, мы получаем значение, которое не зависит от того, какое именно пробное тело мы возьмем, чтобы измерить его. Мы называем это отношение напряженностью электрического поля.
Здесь, чтобы избежать дальнейшей путаницы, я должен ненадолго отклониться от рассказа, чтобы описать и разрешить надоедливую двусмысленность, которую физики в течение десятилетий навязывали сами себе, своим ученикам и всему остальному миру. А именно: существует обычная практика использовать термин «электрическое поле» для двух отчетливо различающихся вещей. Одно из них – это поле значений силы, деленной на заряд. Как мы только что обсудили, это аналог скорости ветра. К сожалению, также термин «электрическое поле» используют, когда речь идет о лежащей в основе среде (о самом электрическом флюиде) в противоположность его возмущенному состоянию. Все равно как если бы кто-то использовал одно и то же слово для обозначения ветра и для обозначения воздуха. В этой книге я буду использовать термины «электрический флюид» и «магнитный флюид» (и позже – «глюоновый флюид»…) для флюидов во всех случаях, где разница важна. Это решение привело меня к употреблению некоторых несколько странноватых выражений, таких как «квантовая теория флюида», там, где в любом другом месте вы бы увидели «квантовую теорию поля». Я думаю, что моя цель – добиться ясности – стоит некоторой видимой эксцентричности. (Конец отступления.)
Подход Фарадея привел его к нескольким значительным открытиям, одно из которых – самое значительное – мы обсудим прямо сейчас. Тем не менее теоретические идеи Фарадея не производили особого впечатления на его современников. Должно быть, им они казались не революционными, а скорее контрреволюционными. До небесной механики Ньютона самыми влиятельными были воззрения Декарта, который считал, что планеты движутся под влиянием наполняющих пространство вихрей, дуновение которых несет их. Ньютон заменил эти расплывчатые представления простыми, математически выверенными законами движения и притяжения, которые работали исключительно хорошо. Те же основные принципы – действие на расстоянии, спадание силы пропорционально его квадрату – также неплохо описывали электричество и магнетизм. Променять эту солидную схему, которую поддерживают точные расчеты и количественные измерения, на не подкрепленные никаким авторитетом мечты какого-то мечтателя-самоучки? Это едва ли похоже на научную стратегию!
Но Максвелл по-другому воспринял размышления Фарадея. На страницах 196–198 я опишу самого Максвелла как личность. (Совершенно откровенно: он мой любимый физик.) Пока скажу лишь, что и в науке, и в жизни в целом он встречал проблемы с шутливым настроем. Я думаю, он увидел в новых флюидах Фарадея чудесные игрушки и был счастлив терпеливо играть с ними.