Тема 3. Второй закон термодинамики.

3.1. Основные положения второго закона термодинамики.

3.2. Энтропия.

3.3. Цикл и теоремы Карно.

Основные положения второго закона термодинамики.

Первый закон термодинамики утверждает, что теплота может превращаться в работу, а работа в теплоту и не устанавливает условий, при которых возможны эти превращения.

Превращение работы в теплоту происходит всегда полностью и безусловно. Обратный процесс превращения теплоты в работу при непрерывном её переходе возможен только при определенных условиях и не полностью. Теплота сам собой может переходит от более нагретых тел к холодным. Переход теплоты от холодных тел к нагретым сам собой не происходит. Для этого нужно затратить дополнительную энергию.

Таким образом для полного анализа явления и процессов необходимо иметь кроме первого закона термодинамики еще дополнительную закономерность. Этим законом является второй закон термодинамики. Он устанавливает, возможен или невозможен тот или иной процесс, в каком направлении протекает процесс, когда достигается термодинамическое равновесие и при каких условиях можно получить максимальную работу.

Формулировки второго закона термодинамики.

Для существования теплового двигателя необходимы 2 источника – горячий источник и холодный источник (окружающая среда). Если тепловой двигатель работает только от одного источника то он называется вечным двигателем 2-го рода.

1 формулировка (Оствальда):

| "Вечный двигатель 2-го рода невозможен".

Вечный двигатель 1-го рода это тепловой двигатель, у которого L>Q1, где Q1 - подведенная теплота. Первый закон термодинамики "позволяет" возможность создать тепловой двигатель полностью превращающий подведенную теплоту Q1в работу L, т.е. L = Q1. Второй закон накладывает более жесткие ограничения и утверждает, что работа должна быть меньше подведенной теплоты (L<Q1) на величину отведенной теплоты – Q2, т.е. L = Q1 - Q2.

Вечный двигатель 2-го рода можно осуществить, если теплоту Q2 передать от холодного источника к горячему. Но для этого теплота самопроизвольно должна перейти от холодного тела к горячему, что невозможно. Отсюда следует 2-я формулировка (Клаузиуса):

|| "Теплота не может самопроизвольно переходит от более

|| холодного тела к более нагретому".

Для работы теплового двигателя необходимы 2 источника – горячий и холодный. 3-я формулировка (Карно):

|| "Там где есть разница температур, возможно совершение

|| работы".

Все эти формулировки взаимосвязаны, из одной формулировки можно получить другую.

Энтропия.

Одним из функций состояния термодинамической системы является энтропия. Энтропией называется величина определяемая выражением:

dS = dQ / T. [Дж/К] (3.1)

или для удельной энтропии:

ds = dq / T. [Дж/(кг·К)] (3.2)

Энтропия есть однозначная функция состояния тела, принимающая для каждого состояния вполне определенное значение. Она является экстенсивным (зависит от массы вещества) параметром состояния и в любом термодинамическом процессе полностью определяется начальным и конечным состоянием тела и не зависит от пути протекания процесса.

Энтропию можно определить как функцию основных параметров состояния:

S = f1(P,V) ; S = f2(P,T) ; S = f3(V,T) ; (3.3)

или для удельной энтропии:

s = f1(P,υ) ; s = f2(P,T) ; S = f3(υ,T) ; (3.4)

Так как энтропия не зависит от вида процесса и определяется начальными и конечными состояниями рабочего тела, то находят только его изменение в данном процессе, которые можно найти по следующим уравнениям:

Ds = cv·ln(T2/T1) + R·ln(υ 2 1) ; (3.5)

Ds = cp·ln(T2/T1) - R·ln(P2/P1) ; (3.6)

Ds = cv·ln(Р21) + cр·ln(υ 2 1) . (3.7)

Если энтропия системы возрастает (Ds > 0), то системе подводится тепло.

Если энтропия системы уменьшается (Ds < 0), то системе отводится тепло.

Если энтропия системы не изменяется (Ds = 0, s = Const), то системе не подводится и не отводится тепло (адиабатный процесс).

Цикл и теоремы Карно.

Циклом Карно называется круговой цикл, состоящий из 2-х изотермических и из 2-х адиабатных процессов. Обратимый цикл Карно в p,υ- и T,s- диаграммах показан на рис.3.1.

1-2 – обратимое адиабатное расширение при s1=Const. Температура уменьшается от Т1 до Т2.

2-3 – изотермическое сжатие, отвод теплоты q2 к холодному источнику от рабочего тела.

3-4 – обратимое адиабатное сжатие при s2=Const. Температура повышается от Т3 до Т4.

4-1 – изотермическое расширение, подвод теплоты q1 к горячего источника к рабочему телу.

Основной характеристикой любого цикла является термический коэффициент полезного действия (т.к.п.д.).

ht = Lц / Qц , (3.8)

или

ht = (Q1 – Q2) / Q1 .

Для обратимого цикла Карно т.к.п.д. определяется по формуле:

h = (Т1 – Т2) / Т1 . (3.9)

Отсюда следует 1-я теорема Карно:

|| "Термический к.п.д. обратимого цикла Карно не зависит от

|| свойств рабочего тела и определяется только температурами

|| источников".

Bиз сравнения произвольного обратимого цикла и цикла Карно вытекает 2-я теорема Карно:

|| "Обратимый цикл Карно является наивогоднейшим циклом в || заданном интервале температур"

Т.е. т.к.п.д. цикла Карно всегда больше т.к.п.д. произвольного цикла:

h > ht . (3.10)

Наши рекомендации