Области применения нейроинформатики
Основное место на рынке услуг, оказываемых реальному потребителю нейроин форматикой , сейчас занимают финансовые приложения. Объясняется это тем, что нейросети эффективно справляются с задачами классификации, моделирова ния и экстраполирования (прогнозирования, предсказания), что особенно важно при решении финансово-экономических проблем.
Нейронные сети служат основой для создания программных пакетов (имитаторов), плат-акселераторов для персональных ЭВМ, нейроБИС , а также специали зированных нейрокомпьютеров. Для отработки методологии решения задач в нейросетевой постановке на первых этапах часто оказывается достаточным ис пользование соответствующего программного пакета.
На мировом рынке представлено более сотни нейросетевых пакетов, преимуще ственно американских. Объем рынка нейронных сетей превышает 1 млрд долларов в год. Более того, практически каждый разработчик традиционных аналитиче ских пакетов сегодня стремится включить нейронные сети в новые версии своих программ. В США нейронные сети применяются в аналитических комплексах каж дого крупного банка.
Остановимся только на краткой характеристике пакета The AI Trilogy и определим место этого пакета на финансовом рынке. Выбор не случаен — ключевые компонен ты пакета (лучшего пакета ФБР) были написаны российскими специалистами.
Пакет The AI Trilogy («Трилогия искусственного интеллекта») американской фирмы Ward Systems Group — это набор из трех программ, каждая из которых мо жет использоваться как самостоятельно, так и в комбинации с остальными: про грамма NeuroShell II — это набор из 16 типов нейронных сетей, NeuroWindows — нейросетевая библиотека с исходными текстами, GeneHunter — генетическая программа оптимизации. В совокупности они образуют весьма мощный конструк тор, позволяющий строить аналитические комплексы любой сложности.
Позиции «Трилогии» на американском рынке чрезвычайно сильны. Пакет уста новлен в 150 крупнейших банках США, многократно побеждал в престижных конкурсах популярных финансовых изданий, помогает управлять капиталами в несколько миллиардов долларов. Отчеты фирмы Du Pont , института стандартов США и ФБР называют входящие в «Трилогию» пакеты лучшими для решения различных задач.
Приход пакета The AI Trilogy на рынок России и создание его русской версии знаменуют собой наступление нового этапа становления отечественного рынка аналитических систем. Сегодня аналитический рынок России созрел для освое ния нового класса пакетов — функционально полных сложных систем, позволяю щих решать комплексные задачи управления финансовыми ресурсами.
Что может дать пакет финансисту? Приведем только два примера. Во время подготовки презентации русской версии «Трилогии» были взяты реальные данные о портфеле небольшой финансовой компании из Калифорнии, играющей на рынке так называемых индексных опционов. Проведение средствами «Трилогии» классической последовательности «Анализ, прогноз, оптимизация» позволило в первый день «сделать» 25 тыс. долларов при величине портфеля в 2 млн. долларов, а во второй — добавить еще 40 тыс.!
Пример комплексной системы, построенной на основе «Трилогии». Аналитиче ский комплекс финансовой компании LBS (США), имеющей в управлении более 1 млрд долларов клиентских денег, управляется всего одной кнопкой — «Старт». Далее система сама обновляет базу данных по котировкам акций 3000 компаний на Нью-Йоркской бирже, определяет наиболее прогнозируемые акции, парал лельно запускает несколько видов прогнозов, выбирает самые перспективные с точки зрения краткосрочной игры компании, оптимизирует портфель и выдает рекомендации трейдерам . Аналитикам остается только соотнести рекомендации системы с собственными представлениями, инсайдерской информацией и фунда ментальными факторами. Еще раз перечислим основные преимущества нейронных сетей
наиболее ценное свойство нейронных сетей — способность обучаться на мно жестве примеров в тех случаях, когда неизвестны закономерности развитие ситуации и какие бы то ни было зависимости между входными и входным данными. В таких случаях (а к ним можно отнести до 80% задач финансового анализа) пасуют как традиционные математические методы, так и экспертные системы;
нейронные сети способны успешно решать задачи, опираясь на неполную, ис каженную, зашумленную и внутренне противоречивую информацию;
для использования методов корреляционного, регрессионного и кластерной анализов вам понадобился бы профессионал-математик. Эксплуатация обучен ной нейронной сети по силам и школьнику;
нейросетевые пакеты позволяют исключительно легко подключиться к база данных, электронной почте и т. д. и автоматизировать процесс ввода и первич ной обработки данных;
внутренний параллелизм, присущий нейронным сетям, позволяет практически безгранично наращивать мощность вашей нейросистемы . Вы можете начать
простого и дешевого пакета, потом перейти на профессиональную версию, по том добавить платы-ускорители, затем перейти на специализированный ней рокомпьютер — с гарантией полной преемственности всего ранее созданное программного обеспечения.
В финансовом мире нейронные сети широко применяются для двух основных задач — прогнозирования котировок основных инструментов (курсов валют, ценных бумаг, ГКО и др.) и распознавания определенных ситуаций (например, подо зрительных операций с кредитной картой). В России наиболее известными приложениями нейросетевых информационных технологий можно признать следующие :
прогнозирование котировок фьючерсов;
краткосрочная динамика курсов валют;
прогноз оптовых цен на продукты питания;
оценка кредитных рисков;
оценка объектов недвижимости;
ряд задач медицинской и промышленной диагностики;
построение высокодоходного футбольного тотализатора;
прогноз развития чрезвычайных ситуаций;
авторизация доступа по индивидуальному «почерку» работы за клавиатуре
компьютера.
Сфера финансовых приложений нейронных сетей практически безгранична. Любая задача, связанная с манипулированием финансовыми инструментами — будь то валюта или ценные бумаги, — сопряжена с риском и требует тщательного расчета и прогнозирования. Как изменится завтра котировка основных валют? Вернет ли кредит внешне благополучная фирма? Как подобрать прибыльный и вместе с тем надежный «портфель инвестора»? Эти и сотни других вопросов при ходится ежедневно решать аналитическим отделам финансовых (да и не только финансовых) компаний, привлекая все виды аналитических инструментов. Поэто му не случайно, что четвертую часть рынка нейросетевых продуктов составляют финансовые приложения.