Краткие методические указания к решению задачи 1.8

По пункту 1. Статистические характеристики – Краткие методические указания к решению задачи 1.8 - student2.ru , Краткие методические указания к решению задачи 1.8 - student2.ru и Краткие методические указания к решению задачи 1.8 - student2.ru были рассчитаны обычным способом в задачах 1.2 (по индивидуальным данным) и 1.3 (по групповым данным). Приведем эти результаты расчетов:

Виды данных Показатели
Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru
1. Индивидуальные 7465,83 440314,00 2098,00
2. Групповые 7465,83 440314,00 2098,00

а) Краткие методические указания к решению задачи 1.8 - student2.ru ,

где Краткие методические указания к решению задачи 1.8 - student2.ru – условный момент 1-го порядка:

Краткие методические указания к решению задачи 1.8 - student2.ru – для индивидуальных данных;

Краткие методические указания к решению задачи 1.8 - student2.ru – для групповых данных;

i – величина интервала; А – условно заданная величина не равная 0;

б) Краткие методические указания к решению задачи 1.8 - student2.ru

где Краткие методические указания к решению задачи 1.8 - student2.ru – условный момент 2-го порядка

Краткие методические указания к решению задачи 1.8 - student2.ru ; Краткие методические указания к решению задачи 1.8 - student2.ru ;

в) среднеквадратическое отклонение Краткие методические указания к решению задачи 1.8 - student2.ru определяется посредством извлечения корня квадратного из дисперсии Краткие методические указания к решению задачи 1.8 - student2.ru .

Ниже для иллюстрации приводится последовательность расчетов и полученные результаты, выполненные по индивидуальным данным информационной базовой таблицы.

Примем А = 7500; i = 1000.

Таблица 22

Промежуточная таблица

№ п/n X X – A (X – A)/i Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru
–4260 –4,26 18,1476
–3300 –3,3 10,89
–3100 –3,1 9,61
–2700 –2,7 7,29
–2500 –2,5 6,25
–2250 –2,25 5,0625
–2100 –2,1 4,41
–1700 –1,7 2,89
–1050 –1,05 1,1025
–940 –0,94 0,8836
–700 –0,7 0,49
–610 –0,61 0,3721
–600 –0,6 0,36
–400 –0,4 0,16
–285 –0,285 0,081225
–140 0,14 0,0196
–600 0,6 0,36
–750 0,75 0,5625
 
1,2 1,44
1,24 1,5376
1,26 1,5876

Окончание табл. 22

№ п/n X X – A (X – A)/i Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru
1,4 1,96
1,4 1,96
2,1 4,41
2,18 4,7524
2,7 7,29
4,5 20,25
Сумма –1,025 132,129225
Итого  
Итого –17,4218 271,7219

Таким образом

Краткие методические указания к решению задачи 1.8 - student2.ru ; Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru ;

Краткие методические указания к решению задачи 1.8 - student2.ru ;

Краткие методические указания к решению задачи 1.8 - student2.ru

и далее Краткие методические указания к решению задачи 1.8 - student2.ru ,

где М1 – центральный момент 1-го порядка; М2 – центральный момент
2-го порядка

Краткие методические указания к решению задачи 1.8 - student2.ru ; Краткие методические указания к решению задачи 1.8 - student2.ru .

При проведении расчетов по групповым данным имеем: А = 7672,00 (в качестве А принимается серединное значение дискретного ряда (6845,00+8499,00)/2=7672,00), i = 1500. Последовательность расчетов следующая.

Таблица 23

№ п/n Нижние и верхние границы интервалов Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru
3000–4500 3946,67 –7,45067 18,50414
4500–6000 5250,00 –8,0733 13,03557
6000–7500 6845,00 –3,85933 2,12778
7500–9000 8499,00 +5,51333 3,03396
9000–10500 9826,17 +4,309333 6,19011
10500–12000 11750,00 +5,43733 14,78229
Итого –4,12333 57,67976

S = 1……K; K – число групп,

Краткие методические указания к решению задачи 1.8 - student2.ru ; Краткие методические указания к решению задачи 1.8 - student2.ru .

Согласно приведенным формулам получаем:

Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru .

Не трудно видеть, что средние величины, рассчитанные по индивидуальным и групповым данным полностью совпали между собой. Между дисперсиями имеется незначительное различие. В общем случае систематическая ошибка в дисперсии или ошибка Ф. Шепарда составляет 1/12 квадрата величины интервала, т.е. скорректированная дисперсия равна σ = (1/12) · i2. Ее применение, однако, допустимо при определенных условиях: а) группировка должна формироваться на основе большого числа наблюдений (n>500); б) характеризоваться тесной близостью с осью абсцисс на концах кривой.

По пункту 2 в интервальном вариационном ряду М0, Ме ДКД рассчитываются по следующим формулам:

Краткие методические указания к решению задачи 1.8 - student2.ru

где М0 – мода, наиболее часто повторяющееся значение признака; X Краткие методические указания к решению задачи 1.8 - student2.ru – нижняя граница значения интервала содержащего моду; i – величина интервала; Краткие методические указания к решению задачи 1.8 - student2.ru – частота модального интервала; Краткие методические указания к решению задачи 1.8 - student2.ru – частота интервала, предшествующего модальному; Краткие методические указания к решению задачи 1.8 - student2.ru – частота интервала, следующего за модальным.

Краткие методические указания к решению задачи 1.8 - student2.ru ,

где Ме – медиана, серединное значение признака; Х Краткие методические указания к решению задачи 1.8 - student2.ru – нижняя граница значения интервала содержащего медиану; i – величина интервала;
Краткие методические указания к решению задачи 1.8 - student2.ru – сумма частот; Краткие методические указания к решению задачи 1.8 - student2.ru – сумма накопленных частот предшествующих медианному интервалу; Краткие методические указания к решению задачи 1.8 - student2.ru – частота медианного интервала.

Моду и Медиану в интервальном ряду можно определить графически. Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который является во всех случаях модальным и его вершины соединяются с вершинами предшествующего и последующего прямоугольников. Абсцисса точек пересечения этих прямых и будет модой ряда распределения.

Медиана рассчитывается по кумуляте. Для чего из точки на шкале постоянных частот, соответствующей 50% проводится прямая параллельная оси абсцисс до пересечения с асимптотой. Затем из точки пересечения опускается перпендикуляр на ось абсцисс и медиана определена

ДКД = Краткие методические указания к решению задачи 1.8 - student2.ru

где ДКД – децильных коэффициент дифференциации; Краткие методические указания к решению задачи 1.8 - student2.ru – 9-я дециль; Краткие методические указания к решению задачи 1.8 - student2.ru – 1-я дециль.

Дециль в общем случае делит ранжированный ряд на 10 равных частей. 1-я дециль делит ряд в соотношении 1 и 9, 2-я дециль = 2 и 8 и т.д., а 9-я дециль делит ряд в соотношении 9 и 1.

1-я дециль – это значение признака Х1 – которое отсекает 10% единиц наблюдения, имеющих наименьшие численные значения признака. 9-я дециль – это значение признака Х1, которое отсекает 10% единиц наблюдения, имеющих наибольшие численные значения признака.

Расчеты децилей производятся по формулам медианы, с учетом того, что совокупность делится не пополам, а на 10 равных частей в названных соотношениях.

Краткие методические указания к решению задачи 1.8 - student2.ru

где Краткие методические указания к решению задачи 1.8 - student2.ru – нижняя граница интервала группы, содержащую 1-ую дециль,
i-интервал, Краткие методические указания к решению задачи 1.8 - student2.ru – сумма частот, Краткие методические указания к решению задачи 1.8 - student2.ru – накопленная сумма частот, предшествующая интервалу, содержащая 1-ую дециль; Краткие методические указания к решению задачи 1.8 - student2.ru – частота интервала, содержащая 1 дециль.

Краткие методические указания к решению задачи 1.8 - student2.ru

где Краткие методические указания к решению задачи 1.8 - student2.ru – нижняя граница интервала группы, содержащую 9-ую дециль, i-интервал; Краткие методические указания к решению задачи 1.8 - student2.ru – сумма частот; Краткие методические указания к решению задачи 1.8 - student2.ru – накопленная сумма частот, предшествующая интервалу, содержащая 9-ую дециль; Краткие методические указания к решению задачи 1.8 - student2.ru – частота интервала, содержащая 9-ую дециль.

Расчеты по выше приводимым формулам не представляют каких-либо трудностей. Применительно к нашему примеру имеем следующее.

Таблица 24

№ п/п Нижние и верхние границы интервалов Частота f Накопленные частоты «Cum f»
3000–4500 4500–6000 6000–7500 7500–9000 9000–10500 10500–12000
Итого

Краткие методические указания к решению задачи 1.8 - student2.ru i = 1500; Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru

Графически мода и медиана представляется следующим образом:

Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru

ДКД Краткие методические указания к решению задачи 1.8 - student2.ru раза.

По пункту 3. Для сравнительного анализа степени ассиметрии изучаемого вариационного ряда рассчитывается относительный показатель ассиметрии:

Краткие методические указания к решению задачи 1.8 - student2.ru

Величина показателя ассиметрии может быть положительной и отрицательной, что указывает на наличие правосторонней или левосторонней ассиметрии.

Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна 0).

Краткие методические указания к решению задачи 1.8 - student2.ru

Если отношение Краткие методические указания к решению задачи 1.8 - student2.ru ассиметрия существенна, если же Краткие методические указания к решению задачи 1.8 - student2.ru ассиметрия несущественна, ее наличие может быть определено наличием различных случайных обстоятельств.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности).

Краткие методические указания к решению задачи 1.8 - student2.ru

Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины нормального распределения. В нормальном распределении отношение Краткие методические указания к решению задачи 1.8 - student2.ru

Оценки существенности показателей ассиметрии и эксцесса позволяют сделать вывод о том, что можно ли отнести данное эмпирическое распределение к типу кривых нормального распределения.

Определение вышеназванных коэффициентов предполагает расчет условных моментов 3-го и 4-го порядка.

Краткие методические указания к решению задачи 1.8 - student2.ru ; Краткие методические указания к решению задачи 1.8 - student2.ru

и переход центральным моментам 3-го и 4-го порядка. Приведем используемые в статистике формулы перехода от условных моментов к центральным:

Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru

Краткие методические указания к решению задачи 1.8 - student2.ru

и далее: Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru

Ниже приводится последовательность расчетов и полученные результаты по пункту 3 данной задачи

Таблица 25

№ п/n Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru Краткие методические указания к решению задачи 1.8 - student2.ru
3946,67 –45,9061 114,1344
5250,00 –210483 33,9861
6843,00 –1,1781 0,6467
8499,00 1,6758 0,9239
9826,67 8,8917 12,7725
11750,00 40,4218 109,2581
Итого –17,4218 214,7219

m3 = –0,5807; m4 = 9,0574

M3 = 698142919,9; M4 = 4,5341E+13; A5 = 0,079; E = –0,53.

Задача 1.10

Проанализируйте полученные результаты решения, представленные в задачах 1.8, 1.9. Примите гипотезу о нормальном распределении частот рассматриваемого вариационного ряда. Произведите его математическое выравнивание с помощью кривой нормального распределения. Рассчитайте критерии согласия Пирсона, Романовского и Колмогорова. Сопоставьте полученные результаты с их табличными значениями. Сформулируйте выводы. Изобразите на графике (совместно) эмпирический и теоретический ряды распределения.

Наши рекомендации