Краткие методические указания к решению задачи 1.2.

Расчет показателей по индивидуальным данным проводится по каждому признаку – Х1, Х2, Х3 и Х4 в следующей последовательности:

1. Определяются итоговые обобщающие показатели, т.е. производится расчет сумм для каждого из признаков в отдельности:

Краткие методические указания к решению задачи 1.2. - student2.ru ,

где i = 1…n; n – число единиц наблюдения.

2. Рассчитываются простые средние арифметические величины:

Краткие методические указания к решению задачи 1.2. - student2.ru ,

где j = 1…; m – число признаков; Краткие методические указания к решению задачи 1.2. - student2.ru – простая среднеарифметическая величина j-го признака; Краткие методические указания к решению задачи 1.2. - student2.ru – индивидуальные значения j-го признака i-ой единицы наблюдения.

3. Рассчитываются показатели размаха вариации;

Краткие методические указания к решению задачи 1.2. - student2.ru ,

где Краткие методические указания к решению задачи 1.2. - student2.ru – максимальное значение j-го признака; Краткие методические указания к решению задачи 1.2. - student2.ru – минимальное значение j-го признака.

4. Рассчитываются средние линейные отклонения:

Краткие методические указания к решению задачи 1.2. - student2.ru .

5. Рассчитываются дисперсии:

Краткие методические указания к решению задачи 1.2. - student2.ru .

6. Рассчитайте среднеквадратические отклонения:

Краткие методические указания к решению задачи 1.2. - student2.ru ,

где i = 1…n, j = 1…m.

7. Определяются в относительных величинах коэффициенты вариации:

Краткие методические указания к решению задачи 1.2. - student2.ru .

При проведении расчетов по вышеприведенным формулам целесообразно использовать вспомогательные расчеты таблицы, в которых представляется последовательность арифметических действий и все промежуточные результаты.

Например, при расчете средних величин, средних линейных отклонений и дисперсий для каждого признака (по условиям задачи) промежуточные таблицы могут быть представлены следующим образом:

№ п/п Х (1) Краткие методические указания к решению задачи 1.2. - student2.ru (2) Краткие методические указания к решению задачи 1.2. - student2.ru (3) Краткие методические указания к решению задачи 1.2. - student2.ru (4)
       
       
       
       
N        
Итого Краткие методические указания к решению задачи 1.2. - student2.ru Краткие методические указания к решению задачи 1.2. - student2.ru Краткие методические указания к решению задачи 1.2. - student2.ru Краткие методические указания к решению задачи 1.2. - student2.ru

Полученные в результате расчетов обобщающие статистические характеристики оформляются в виде выходных статистических таблиц.

Ниже для иллюстрации нами приводятся результаты расчетов этих характеристик отдельно для количественных признаков – Х1, Х2, и Х3 (непрерывные признаки – Х1 и Х2 и дискретный признак Х3) и для альтернативного признака Х4, выполненные по данным информационной таблицы базового варианта (см. введение).

Основные статистические характеристики количественных признаков – Х1, Х2, Х3 представлены в табл. 3.

Таблица 3

№ п/п Характеристики. Признаки Х1, руб. Х2, руб. Х3, руб.
Итоговые обобщающие показатели
Средние величины 7465,83 3663,00 3,73
Размах вариации
Средние линейные отклонения 1732,2 747,87 0,93
Дисперсии 4403140,14 834847,67 1,26
Средние квадратических отклонений 2098,37 913,70 1,12
Коэффициент вариаций в % 28,11 24,94 30,09

Основные статистические характеристики альтернативного признака – Х4.

Таблица 4

№ п/п Характеристики. Признаки. Х4
Сумма единиц, обладающая данным признаком Краткие методические указания к решению задачи 1.2. - student2.ru
Доля единиц, обладающая данным признаком Краткие методические указания к решению задачи 1.2. - student2.ru 0,50
Доля единиц, не обладающая данным признаком = (1 – p) 0,50
Дисперсия альтернативного признака Краткие методические указания к решению задачи 1.2. - student2.ru pq 0,25
Среднеквадратическое отклонение альтернативного признака Краткие методические указания к решению задачи 1.2. - student2.ru Краткие методические указания к решению задачи 1.2. - student2.ru 0,25

Представленные выходные таблицы в этой и всех последующих задачах носят рекомендательный характер, так как возможны и другие формы представления данных.

В целях упрощения нумерация формул, таблиц, графиков дается по каждой задаче в отдельности.

Задача 1.3

По данным информационной таблицы Вашего варианта произведите группировку индивидуальных данных, приняв за основу группировки количественный непрерывный признак Х1. Группы образуйте с равными и неравными интервалами в следующей последовательности.

1. Образуйте группы с равными интервалами. По каждой группе определите:

а) число единиц наблюдения в абсолютных и относительных величинах (в % к итогу);

б) групповые обозначающие итоговые показатели признаков – Х1, Х2, Х3, Х4 в абсолютных и относительных величинах (в % к итогу);

в) групповые средние величины и групповые частные дисперсии признаков – Х1, Х2, Х3, Х4.

2. Образуйте группы с неравными (равнонаправленными) интервалами – 10 групп по 10% единиц наблюдения в каждом интервале и 5 групп по 20% единиц наблюдения также в каждом интервале. По каждой группе для признаков Х1, Х2, Х3, Х4 (для названных вариантов) рассчитайте групповые итоговые значения названных признаков в абсолютных и относительных величинах (в % к итогу).

3. Образуйте 5 групп с интервалами, меняющимися по правилу арифметической прогрессии. Рассчитайте абсолютные и относительные показатели плотности распределения. Все полученные результаты (пункты 1, 2, 3) представьте в статистических таблицах.

Наши рекомендации