Моделирование и анализ детерминированных факторных систем

Одной из задач факторного анализа является моделирование взаимосвязей между результативными показателями и факторами, которые определяют их величину. Сущность моделирования заключается в том, что взаимосвязь исследуемого показателя с факторными передается в форе конкретного математического уравнения.
В факторном анализе различают модели детерминированные (функциональные) и стохастические (корреляционные).
С помощью детерминированных факторных моделей исследуется функциональная связь между результативным показателем (функцией) и факторами (аргументами).
При моделировании детерминированных факторных систем необходимо выполнять ряд требований:
1. Факторы, которые включаются в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.
2. Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями. Иначе говоря, построенная факторная система должна иметь познавательную ценность. Факторные модели, которые отражают причинно-следственные отношения между показателями, имеют значительно большее познавательное значение, чем модели, созданные при помощи приемов математической абстракции.
Последнее можно проиллюстрировать следующим образом. Возьмем две модели:
1) ВП = КР* ГВ;
2) ГВ = ВП/КР,
где ВП - валовая продукция предприятия; КР - численность (количество) работников на предприятии; ГВ - среднегодовая выработка продукции одним работником.
В первой системе факторы находятся в причинной связи с результативным показателем, а во второй - в математическом соотношении. Значит, вторая модель, построенная на математических зависимостях, имеет меньшее познавательное значение, чем первая.
3. Все показатели факторной модели должны быть количественно измеримыми, т.е. должны иметь единицу измерения и необходимую информационную обеспеченность.
4. Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это значит, что в ней должна учитываться соразмерность изменений результативного и факторных показателей, а сумма влияния отдельных факторов должна равняться общему приросту результативного показателя.
В детерминированном анализе выделяют следующие типы наиболее часто встречающихся факторных моделей:
1. Аддитивные модели используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.
У = Х1+Х2+Х3+…+Хп
2. Мультипликативные модели применяются тогда, когда результативный показатель представляет собой произведение нескольких факторов.
У = Х1*Х2*Х3*…*Хп
3. Кратные модели применяются тогда, когда результативный показатель получают делением одного факторного на величину другого.
У = Х1/Х2
4. Смешанные модели – это сочетание в различных комбинациях предыдущих моделей.
У = (а+в)/с; У = а/(в+с); У = (а*в)/с; У = (а+в)*с.
Моделирование мультипликативных факторных систем осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители. Например, при исследовании процесса формирования объема производства продукции можно применять такие детерминированные модели, как:
ВП=КР*ГВ; ВП=КР*Д*ДВ; ВП=КР*Д*П*СВ
Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей, а пределах установленных правил.
Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от целей исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.

Наши рекомендации