Сравнительные особенности начислен ия сложных процентов

· для промежутков времени меньше года задолженность, найденная по методу простых процентов, всегда будет больше задолженности, найденной по методу сложных процентов;

  • для промежутков времени больше года, наоборот, задолженность, найденная по методу сложных процентов, всегда будет больше задолженности, найденной по методу простых процентов;
  • ну и, разумеется, для промежутка времени, равного одному году, результаты совпадают.

5.Практика начисления простых процентов. Обычно к наращению по простым процентам прибегают при выдаче краткосрочных ссуд (на срок до одного года) или в случаях, когда проценты не присоединяются к сумме долга, а периодически выплачиваются кредитору. Поскольку ставка, как правило, фиксируется в контракте в расчете за год, то при сроке ссуды менее года необходимо определить, какая часть годового процента уплачивается кредитору. Аналогичная проблема возникает и в других случаях, когда срок ссуды меньше периода начисления.

6.Дисконтирование. Термин "дисконтирование" употребляется как средство определения любой стоимостной величины, относящейся к будущему, на некоторый, более ранний момент времени.

В зависимости от вида процентной ставки применяют два метода дисконтирования — математическое дисконтирование и банковский (коммерческий) учет. В первом случае используется ставка наращения, во втором — учетная ставка.

Математическое дисконтирование представляет собой формальное решение задачи, обратной наращению первоначальной суммы ссуды. Задача в этом случае формулируется так: какую первоначальную сумму ссуды надо выдать в долг, чтобы получить в конце срока сумму S при условии, что на долг начисляются проценты по ставке i

Сравнительные особенности начислен ия сложных процентов - student2.ru .

7.Банковский учет (учет векселей). Суть операции заключается в следующем. Банк или иное финансовое учреждение до наступления срока платежа (date of maturity) по векселю или иному платежному обязательству приобретает его у владельца по цене, которая меньше суммы, указанной на векселе, т.е. покупает (учитывает) его с дисконтом (т.е. со скидкой). Получив при наступлении срока векселя деньги, банк реализует дисконт. В свою очередь владелец векселя с помощью его учета имеет возможность получить деньги, хотя и не в полном объеме, однако раньше указанного на нем срока. При учете векселя применяется банковский, или коммерческий, учет (bank discount). Согласно этому методу проценты за пользование ссудой в виде дисконта начисляются на сумму, подлежащую уплате в конце срока (maturity value). При этом применяется учетная ставка d.

Размер дисконта, или суммы учета, очевидно, равен Snd;если d — годовая ставка, то п измеряется в годах. Таким образом:

P = S - Snd = S(1 -nd).

8.Наращение по простым и сложным процентам при изменении ставки во времени. Если предусмотрены изменяющиеся во времени процентные ставки, то наращенная сумма будет определяться следующим образом:

S = Р ( 1 +n1i2+ n2i2 + ... +nmim ) (4)

Где ik - процентная ставка в период k,

nk - продолжительность периода к.

В ряде практических приложений финансового анализа встает вопрос об определении первоначальной суммы долга по накопленной сунне, в зависимости от используемой ставки он решается путей использования математического дисконтирования или банковского учета.

9.Номинальная и эффективная ставки процента.Пусть годовая ставка равна у, а число периодов начисления в году равно т. Таким образом, каждый раз проценты начисляются по ставке j/m. Ставку j называют номинальной (nominal rate).

Формулу наращения теперь можно представить следующим образом:

S = P(1 + j/m)N,

где N — общее количество периодов начисления;

j — номинальная годовая ставка (десятичная дробь).

Если N — целое число (N = mn), то в большинстве случаев для определения величины множителя наращения можно воспользоваться таблицей сложных процентов (Приложение, табл. 2). Например, при j = 20% и поквартальном начислении процентов (т = 4) в течение пяти лет отыскиваем табличное значение множителя для i = 20/4 = 5% и п = 5 х 4 = 20; находим q = 2,653298.

Эффективная ставка. Введем теперь новое понятие — действительная, или эффективная, ставка процента (effective rate). Эта ставка измеряет тот реальный относительный доход, который получают в целом за год от начисления процентов. Иначе говоря, эффективная ставка — это годовая ставка сложных процентов, которая дает тот же результат, что и m-разовое начисление процентов по ставке j/m. Обозначим эффективную ставку через i. По определению множители наращения по двум видам ставок (эффективной и номинальной при m-разовом начислении) должны быть равны друг другу:

Сравнительные особенности начислен ия сложных процентов - student2.ru ,

откуда

Сравнительные особенности начислен ия сложных процентов - student2.ru

Как видим, эффективная ставка при т > 1 больше номинальной, при т = 1 i =j.

Замена в договоре номинальной ставки j при m-разовом начислении процентов на эффективную ставку i не изменяет финансовых обязательств участвующих сторон, т.е. обе ставки эквивалентны в финансовом отношении.

Наши рекомендации