Современная структура интернета
В настоящее время основу сети Интернет составляют высокоскоростные магистральные сети. Независимые сети подключаются к магистральной сети через точки сетевого доступа NAP (Network Access Point). Независимые сети рассматриваются как автономные системы, то есть каждая из них имеет собственное административное управление и собственные протоколы маршрутизации. Изменение протоколов маршрутизации внутри автономной системы не влияет на работу остальных систем. Деление сети Интернет на автономные системы позволяет распределить информацию о топологии всей сети и существенно упростить маршрутизацию.
Автономная система должна состоять не менее чем из 32 меньших по размеру сетей. Обычно в качестве автономных систем выступают крупные, независимые, национальные сети. Примерами подобных сетей являются сеть EUNet, охватывающая страны центральной Европы, сеть RUNet, объединяющая университеты России. Автономные сети могут образовывать компании, специализирующиеся на предоставлении услуг доступа в сеть Интернет, - провайдеры. Такими провайдерами, например, являются компания UUNET в США и компания Relcom в России.
Внутри автономной системы данные предаются от одной сети к другой, пока не достигнут точки сопряжения с другой автономной системой. Обмен данными возможен только в том случае, если между автономными системами существуют соглашения о предоставлении транзита. По этой причине для пользователей разных автономных систем время доступа к одному и тому же ресурсу может существенно различаться.
Сети, включенные в автономные системы, представляют собой региональные сети, сети университетов, исследовательских центров и коммерческих фирм, а также сети более мелких региональных провайдеров.
Важным параметром, определяющим качество работы в сети Интернет, является скорость доступа к ресурсам сети. Скорость доступа определяется пропускной способностью канала связи внутри автономной системы и между автономными системами. Для модемного соединения, которое используют большинство домашних пользователей персональных компьютеров, пропускная способность канала невелика - от 19,2 до 57,6 Кбит/с; для выделенных телефонных линий, часто используемых для подключения к сети Интернет небольших локальных компьютерных сетей, - от 64 Кбит/с до 2 Мбит/с; для спутниковых и оптоволоконных каналов связи, которые в основном используются для создания автономных сетей, - от 2 Мбит/с и выше.
ОСНОВНЫЕ ПРОТОКОЫ СЕТИ ИНТЕРНЕТ
В основном в сети Интернет используется семейство протоколов TCP/IP. Рассмотрим более подробно структуру протоколов TCP/IP с точки зрения модели OSI.
На канальном и физическом уровнях модели OSI TCP/IP поддерживает многие из существующих стандартов, определяющих среду передачи данных. Это могут быть, например, технологии Ethernet и FDDI для локальных компьютерных сетей или Х.25 и ISDN для организации крупных территориальных сетей. На этом уровне также могут использоваться протоколы РРР и SLIP, предназначенные для установления соединения с использованием аналоговых линий связи.
Основой семейства протоколов TCP/IP является сетевой уровень, представленный протоколом IP, а также различными протоколами маршрутизации. Этот уровень предоставляет адресное пространство, обеспечивает перемещение пакетов в сети, а также управляет их маршрутизацией.
Размеры пакета, параметры передачи, контроль целостности осуществляются на транспортном уровне протоколом TCP. Протокол UDP работает на том же уровне, но применяется в том случае, когда требования к надежности передачи данных менее жесткие.
Прикладной уровень объединяет все службы, которые система предоставляет пользователю. К наиболее важным прикладным протоколам относятся протокол удаленного управления telnet, протокол передачи файлов FTP, протокол передачи гипертекста HTTP, протоколы для работы с электронной почтой: SMTP, POP, ШАР и MIME. На этом уровне работает система доменных имен DNS, отвечающая за преобразование числовых IP-адресов в имена. Кроме того, следует отметить протокол SNMP, предназначенный для управления сетевыми устройствами.
АДРЕСАЦИЯ В СЕТИ ИНТЕРНЕТ
Каждый компьютер, включенный в сеть Интернет, имеет уникальный IP-адрес, на основании которого протокол IP передает пакеты в сети. IP-адрес состоит из четырех байтов и записывается в виде четырех десятичных чисел, разделенных точками, например:
194.85.120.66
IP-адрес состоит из двух логических частей: номера сети и номера узла в сети. Если сеть, в которую включен компьютер пользователя, является частью Интернета, то номер сети выдает специальное подразделение Интернета - InterNIC (Internet Network Information Center) или его представители. Номер узла определяет администратор сети.
В зависимости от того, какое количество байтов в IP-адресе выделяется для номера сети и номера узла, выделяют несколько классов IP-адресов.
Если номер сети занимает один байт, а номер узла три байта, то такой адрес относится к классу А. Количество узлов в сети класса А может достигать 224, или 16 777 216. Номер сети класса А меняется в диапазоне от 1.0.0.0 до 126.0.0.0. Если под номер сети и номер узла отводится по два байта, то адрес принадлежит к классу В. Количество возможных узлов в сети класса В составляет 216, или 65536 узлов. Номер сети класса В меняется от 128.0.0.0 до 191.255.0.0.
Если под номер сети отводится три байта, то адрес принадлежит к классу С. Количество узлов в сети класса С ограничено 28, или 256. Номер сети меняется от 192.0.1.0 до 223.255.255.0.
Например, в IP-адресе 194.85.120.66, 0.0.0.66 - это номер узла в сети класса С с номером 194.85.120.0.
Существует несколько специальных IP-адресов. Так, например, адрес 127.0.0.1 определяет локальную машину пользователя и используется для тестирования различных программ. При этом данные по сети не передаются.
ПРОТОКОЛ IP
Протокол IP представляет собой основу протоколов TCP/IP. Протокол IP относится к типу протоколов без установления соединения, то есть - никакой управляющей информации кроме той, что содержится в самом IP-пакете, по сети не передается. Кроме того, протокол IP не гарантирует надежной доставки сообщений.
Поток данных протокол IP разбивает на определенные части - дейтаграммы и рассматривает каждую дейтаграмму как независимую единицу, не имеющую связи с другими дейтаграммами. Дейтаграмма - общее название единицы данных, которыми оперируют протоколы без установления соединения. Основной задачей протокола IP является передача дейтаграмм между сетями. Часто дейтаграммы, передаваемые с помощью протокола IP, называют IP-пакетами.
ПРОТОКОЛ ТСР/IP
Так как протокол IP не гарантирует надежную доставку сообщений, эту задачу решает протокол TCP. В отличие от протокола IP, протокол TCP устанавливает логическое соединение между взаимодействующими процессами. Перед передачей данных посылается запрос на начало сеанса передачи, получателем посылается подтверждение.
Надежность протокола TCP заключается в том, что источник данных повторяет их посылку в том случае, если не получит в определенный промежуток времени от адресата подтверждения их успешного получения. Части, на которые протокол TCP разбивает поток данных, принято называть сегментами. Каждый сегмент предваряется заголовком. В заголовке сегмента существует поле контрольной суммы. Если при пересылке данные повреждены, то по контрольной сумме протокол TCP может это определить. Поврежденный сегмент уничтожается, а источнику ничего не посылается. Если данные не были повреждены, то они пропускаются на сборку сообщения приложения, а источнику отправляется подтверждение.
Для транспортировки сегментов протокол TCP использует протокол IP. Перед отправкой протокол TCP помещает сегменты в оболочку IP-пакета.
ПОРТЫ И СОЕДИНЕНИЯ
Задача протокола TCP заключается в передаче данных между любыми прикладными процессами, выполняющимися на компьютерах в сети. На каждом компьютере может выполняться одновременно несколько процессов. Для того чтобы доставить сообщение определенному процессу, необходимо каким-то образом идентифицировать его среди других. Идентификатор процесса носит название номера порта. Номер порта и IP-адрес компьютера однозначно определяют процесс, работающий в сети. Набор этих параметров называется сокет.
За некоторыми процессами номера портов закреплены. Так, например, порт 21 закреплен за службой удаленного доступа к файлам FTP, порт 23 - за службой удаленного управления telnet.
Для организации надежной передачи данных предусматривается установление логического соединения между прикладными процессами, которое определяется парой сокетов взаимодействующих процессов. В процессе соединения осуществляется подтверждение правильности приема сообщений и при необходимости выполняется повторная передача.
СИСТЕМА ДОМЕННЫХ ИМЕН DNS
Человеку крайне неудобно использовать числовые IP-адреса, поэтому логичным представляется создание механизма, позволяющего ставить в соответствие IP-адресам символьные имена. В сети Интернет для этой цели используется система доменных имен (DNS), которая имеет иерархическую структуру. Младшая часть доменного имени соответствует конечному узлу сети. Составные части отделяются друг от друга точкой. Например, mail.econ.pu.ru. У одного узла может быть несколько имен.
Совокупность имен, у которых несколько старших частей доменного имени совпадают, называется доменом. Например, имена mail.econ.pu.ru и www.econ.pu.ru принадлежат домену econ.pu.ru.
Самым главным является корневой домен. Далее следуют домены первого, второго и третьего уровней. Корневой домен управляется InterNIC. Домены первого уровня назначаются для каждой страны, при этом принято использовать трехбуквенные и двухбуквенные аббревиатуры. Так, например, для России домен первого уровня - ru, для США - us. Кроме того, несколько имен доменов первого уровня закреплено для различных типов организаций:
com - коммерческие организации (например, ibm.com);
edu - образовательные организации (например, spb.edu);
gov - правительственные организации (например, loc.gov);
org - некоммерческие организации (например, w3.org);
net - организации, поддерживающие сети (например, ripn.net);
Для каждого имени домена создается свой DNS-сервер, который хранит базу данных соответствий IP-адресов и доменных имен, расположенных в данном домене, а также содержит ссылки на DNS-серверы доменов нижнего уровня. Таким образом, для того чтобы получить адрес компьютера по его доменному имени, приложению достаточно обратиться к DNS-серверу корневого домена, а тот, в свою очередь, перешлет запрос DNS-серверу домена нижнего уровня. Благодаря такой организации системы доменных имен нагрузка по разрешению имен равномерно распределяется среди DNS-серверов.
ЭЛЕКТРОННАЯ ПОЧТА
Система электронной почты позволяет доставить сообщение на любой компьютер, включенный в сеть Интернет. Сообщение может содержать текст или файл практически любого формата - графику, музыку и т. д.
Все пользователи электронной почты имеют уникальные адреса. Адрес пользователя зарегистрирован в определенном домене Интернета. С каждым доменом связан почтовый сервер, управляющий адресами пользователей.
Пользователь набирает текст письма в специальной программе, которая называется почтовым клиентом. Эта программа, в зависимости от возможностей, позволяет создавать и редактировать новые письма, обрабатывать пришедшие, хранить и систематизировать переписку и т. д.
Почтовый клиент помещает письмо в "почтовый ящик" пользователя, расположенный на почтовом сервере. Сервер, в свою очередь, передает письмо на почтовый сервер адресата.
АДРЕС ЭЛЕКТРОННОЙ ПОЧТЫ
В Интернете принята система адресов, которая базируется на доменном адресе машины, подключенной к сети. Адрес пользователя состоит из двух частей, разделенных символом "@": Например: [email protected]
В данном случае Jones - это имя пользователя. A Registry, org - адрес, доменное имя почтового сервера.