Естественноисторический материализм, 35 страница
ния, требуемых исчерпывающим доказательством, и полного перечня осн. принципов: определений, постулатов, аксиом, положенных в основу дедукции. Фреге использует созданный им язык Л. для формализации арифметики. Ту же задачу, но на основе более простого языка, осуществляют Дж. Пеано и его школа («Формуляр математики» — «Formulaire de mathematique», t. 1—2, 1895—97).
Очевидным успехом движения за математизацию Л. явилось его признание на 2-м Филос. конгрессе в Женеве (1904), хотя в обществ. мнении оно утвердилось не сразу. Гл. идейным противником применения мате-матич. методов к системе логич. понятий был психологизм в логике, к-рый воспринимал математизацию Л. как своего рода возрождение схоластики, менее всего способное поставить логические исследования на научный фундамент. Однако именно в этом своём пункте психологизм оказался антиисторичен. Борьба за математизацию Л. привела к мощному развитию этой науки.
После «Principle Mathematica» (1910—13) Б. Рассела и А. Уайтхеда — трёхтомного труда, систематизировавшего дедуктивно-аксиоматич. построение классич. Л. (см. Логицизм), создаётся многозначная Л. (Я. Лу-касевич, Э. Пост, 1921), аксиоматизируются модальная (К. Льюис, 1918) и интуиционистская Л. (В. Гливенко, 1928; А. Гейтинг, 1930). Но главные исследования переносятся в область теории доказательств: уточняются правила и способы построения исчислений и изучаются их осн. свойства — независимость постулатов (П. Бер-найс, 1918; К. Гёдель, 1930), непротиворечивость (Пост, 1920; Д. Гильберт и В. Аккерман, 1928; Ж. Эр-бран, 1930) и полнота (Пост, 1920; Гёдель, 1930), появляются классические работы по логической семантике (А. Тарский, 1931) и теории моделей (Л. Лёвен-хейм, 1915; Т. Скулем, 1919; Гёдель, 1930; А.И.Мальцев, 1936).
Начиная с 1930-х гг. закладываются основы изучения «машинного мышления» (теория алгоритмов — Гёдель, Эрбран, С. Клини, А. Тьюринг, А. Чёрч, Пост, А. А. Марков, А. Н. Колмогоров и другие). И хотя выясняется ограниченность этого мышления, проявляющаяся, напр., в алгоритмич. неразрешимости ряда логич. проблем (Гёдель, 1931; П. С. Новиков, 1952), в невыразимости всех содержат, истин в к.-л. едином формальном языке (Гёдель, 1931), а тем самым и невыполнимость лейбницевской идеи создания каталога всех истин вместе с их формальными доказательствами, всё же растёт сирое на применение Л. в вычислит. математике, кибернетике, технике (первоначально в форме алгеб-раич. теории релейно-контактных схем, а затем в форме более общей теории анализа и синтеза конечных автоматов, теории алгоритмов и пр.), а также в гуманитарных науках: психологии, лингвистике, экономике. Совр. Л.— это не только инструмент точной мысли, но и «мысль» первого точного инструмента, электронного автомата, непосредственно в роли партнёра включённого человеком в сферу решения интеллектуальных задач но обработке (хранению, анализу, вычислению, моделированию, классификации) и передаче информации в любой, области знания и практики.
• Аристотель, Соч., т. 2, М., 1978; Лукасевич Я., Аристотелевская силлогистика с т. зр. совр. формальной Л., пер. с англ., М., 1959; M и л л ь Д ж. С., Система Л. силлогистической и индуктивной, пер. с англ., М., 19142; Гильберт Д.,Аккерман В., Основы теоретич. Л., пер. с нем., М., 1947; Тарский А., Введение в Л. и методологию дедуктивных наук, пер. с англ., М., 1948; Чёрч А., Введение в ма-тематич. Л., пер. с англ., т. 1, М., 1960; Попов П. С., История Л. нового времени, М., 1960; Маковельский А. О., История Л., М., 1967; С т я ж к и н Н. И., Формирование ма-тематич. Л., М., 1967; Математич. теория логич. вывода. Сб. переводов, М., 1967; Карри X. Б., Основания математич. Л., пер. с англ., М., 1969; Марков А. А.,О логике конструктивной математики, М., 1972; Н о в и к о в П. С., Элементы математич. Л., M., 19732; К л и н н С. К., Математич. Л., пер, с англ., М., 1973; Φ ей с Р., Модальная Л., пер. с англ., М., 1974; Попов П. С., С т я ж к и н Н. И., Развитие логич.
идей от античности до эпохи Возрождения, М., 1974; Философия в совр. мире. Философия и Л., М., 1974; Ш е н ф и л д Д ж. Р., Математич. Л., пер. с англ., М., 1975; Т а к е у т и Г., Теория доказательств, пер. с англ., М., 1978; Драгалин А. Г., Математич. интуиционизм. Введение в теорию доказательств, Μ., 1979; Крайзель Г., Исследования по теории доказательств, пер. с англ., М., 1981; В е г k а К., К г е i s е г L., Logik — Texte. Kommentierte Auswahl zur Geschichte der modernen Logik, B., 1971; Risse W., Bibliographie logica, Bd 1—4, Hildesheim — N. Y., 1965 — 79. M. M. Новосёлов.
ЛОГИКА ВЫСКАЗЫВАНИЙ,логика суждений, пропозициональная логика, раздел совр. логики, лежащий в основе большинства её разделов в традиц. их изложении. Осн. объект Л. в. — высказывание, являющееся абстракцией от понятия предложения естеств. языка, в связи с чем Л. в. наз. иногда логикой предложений. Высказывание — это предложение, рассматриваемое в отвлечении от его внутр. (субъектно-предикатной) структуры — исключительно с т. зр. его возможных истинностных значений: обычно истины (обозначаемой через «и») или лжи («л»). Т. о., высказывание — это предложение, о к-ром имеет смысл говорить, что оно истинно или ложно. Из элементарных высказывании, относительно к-рых вопрос о присвоении им одного из значений «и» или «л» считается заранее решённым, с помощью логических операций (играющих роль союзов и аналогичных им конструкций естеств. языка) строятся сложные высказывания (аналоги сложносочинённых и сложноподчинённых предложений), значения истинности к-рых однозначно определяются истинностными значениями исходных высказываний и определением данной логич. операции. В соответствии с «естественной» интерпретацией высказываний и свойствами логич. операций, посредством к-рых они построены, нек-рые из полученных т. о. формул Л. в. оказываются тождественно-истинными (т. е. истинными при всех распределениях истинностных значений исходных элементарных формул); их наз. также тавтологиями. Такие формулы выражают логические законы; их выявление — одна из осн. задач Л. в. Фиксировав нек-рые из них в качестве аксиом с помощью подходящих правил вывода, получают описание Л. в. в виде исчисления высказываний.
• Столл Р.Р., Множества. Логика. Аксиоматич. теории, пер. с англ., М., 1968.
ЛОГИКА ДИАЛЕКТИЧЕСКАЯ, см. в ст. Диалектика.
ЛОГИКА КЛАССОВ, раздел логики, в к-ром рассматриваются классы (множества) предметов, задаваемые характеристическими свойствами этих предметов (элементов классов). В совр. логике Л. к. может пониматься как «алгебра множеств», т. е. интерпретироваться (см. Интерпретация) как совокупность закономерностей, к-рым удовлетворяют т. н. теоретико-множеств. операции: объединение (сумма), пересечение (произведение) и дополнение множеств, или же как изоморфная этой алгебре (см. Изоморфизм и гомоморфизм) логика одноместных предикатов, в свою очередь понимаемая как частный случай логики предикатов или как расширение логики высказываний. Изоморфизм упомянутых интерпретаций Л. к. обеспечивается взаимнооднозначным сопоставлением объектов, рассматриваемых в этих интерпретациях: множествам (классам) сопоставляются высказывания о принадлежности к.-л. предмета данному множеству, объединению множеств — конъюнкция соответствующих высказываний, пересечению — их дизъюнкция, а дополнению — отрицание. Рассматривая модель (реализацию, интерпретацию) Л. к. на предметной области, состоящей из одного-единственного элемента, вопрос об истинности или ложности к.-л. формулы Л. к. можно свести к вопросу относительно соответствующей формулы логики высказываний, подобно к-рой Л. к. оказывается, т. о., разрешимой. Поэтому в совр. логике Л. к,
ЛОГИКА 319
трактуют как одноместный фрагмент логики предикатов, изоморфный логике высказываний.
* см. к ст. Логика.
ЛОГИКА НАУКИ,в спец. смысле дисциплина, применяющая понятия и технич. аппарат совр. формальной логики к анализу систем науч. знания. Термин «Л. н.» часто употребляется также для обозначения законов развития науки (логика науч. развития), правил и процедур науч. исследования (логика исследования), учения о психологич. и методологич. предпосылках науч. открытий (логика науч. открытия).
Л. н. как спец. дисциплина начала развиваться в сер. 19 в. и окончательно оформилась в 1-й четв. 20 в. под влиянием идей Фреге, Рассела и Витгенштейна. В 30-х гг. интенсивно Л. н. занимались участники Венского кружка, а также др. философы, естествоиспытатели и математики (К. Поппер, В. Дубислав, X. Рей-хенбах и др.). Т. к. в подавляющем большинстве они стояли на позициях неопозитивизма, то на протяжении многих лет было широко распространено мнение, что Л. н. является специфически позитивистским подходом к филос. и методологич. анализу науч. знания. Однако в действительности неопозитивистская интерпретация Л. н. представляет собой частный вариант её филос. истолкования, в значит. степени преодоленный уже к кон. 50-х — нач. 60-х гг. За рубежом исследования по Л. н. ведутся преим. в рамках аналитич. философии, критич. рационализма и феноменологии, распространяясь не только на естествознание, но и на область обществ. наук, этики и теории познания.
В разработке совр. Л. н. активное участие принимают философы и логики, стоящие на позициях диалектич. материализма. В их работах центр. место занимают логич. анализ систем науч. знания, исследования по индуктивной логике, логич. структуре теоретич. и эмпирич. знания естеств. и обществ. наук.
Круг осн. проблем Л. н. охватывает: 1) изучение логич. структур науч. теорий; 2) изучение построения искусств. (формализованных) языков науки; 3) исследование различных видов дедуктивных (см. Дедукция) и индуктивных (см. Индукция) выводов, применяемых в естеств., социальных и технич. науках; 4) анализ формальных структур исходных и производных науч. понятий и определений; 5) рассмотрение и совершенствование логич. структуры исследоват. процедур и опе-раций и разработка логич. критериев их эвристич. эффективности; 6) исследование логико-гносеологич. и логико-методологич. содержания процессов абстрагирования, объяснения, предвидения, экстраполяции и редукции науч. теорий, наиболее часто применяемых во всех сферах науч. деятельности.
Важным средством логич. анализа систем науч. знания является применение методов формализации. Преимущество метода формализации заключается в том, что он позволяет выявить логич. связи и отношения и точно фиксирует правила, гарантирующие получение достоверных знаний из исходных посылок данной теории, выступающих после определ. логич. обработки в качестве аксиом рассматриваемого формализма. В случае дедуктивных теорий речь идёт о правилах необходимого следования. Дедуктивное построение теории чаще всего встречается в математике, теоретич. физике, теоретич. биологии и в нек-рых др. науч. дисциплинах. Правила индуктивных теорий характеризуют различные формы вероятностного следования. Индуктивные теории характерны для большинства эмпирич. наук, в к-рых возникают ситуации неопределённости, связанные с неполнотой информации о связях, свойствах и отношениях исследуемых объектов.
Создание формализованных систем позволяет исследовать ряд важнейших логич. свойств содержат. тео-
ЛОГИКА
рий, отображённых в данном формализме. К ним прежде всего относятся непротиворечивость, полнота и независимость исходных постулатов данной теории.
Обнаружение общности логич. структур различных в содержат. смысле науч. теорий открывает большие возможности для перенесения идей и методов одной теории в область другой, для обоснования возможности сведения одной теории к другой и выявления их общих понятийных и методологич. предпосылок. Это важно для унификации и упрощения систем науч. знания, особенно в условиях быстрого возникновения и развития новых науч. дисциплин.
Особое место в Л. н. занимают проблемы, связанные с эмпирич. обоснованием и проверкой естеств.-науч. и социальных теорий и гипотез. Интенсивные исследования в этой области показали несостоятельность раннего неопозитивистского принципа полной верифицируемости (см. Верификация), так же как и критерия фальсифицируемости (см. Фальсификация). Затруднения, возникшие в неопозитивистской Л. н., привлекли внимание мн. логиков и философов к проблеме связи и взаимодействия логич. структур со структурами предметно-экспериментальной практич. деятельности, что обусловило целый ряд новых подходов к Л. н. Этим в значит. степени объясняется наметившийся среди зарубежных логиков интерес к принципам теории познания диалектич. материализма.
Особый интерес приобретают исследования по логич. семантике, посвящённые изучению смыслов и значений теоретич. и эмпирич. терминов в языках различ. наук. Обнаружение того, что теоретич. предикаты, с помощью к-рых выражаются понятия и формулируются законы определ. науч. теорий, не сводятся исчерпывающим образом к предикатам наблюдения, фиксирующим результаты непосредств. науч. наблюдений и экспериментов, выдвинуло целый ряд сложных проблем. Важнейшими среди них являются проблемы логич. анализа словарей разл. наук, правил перевода языка теории на язык наблюдений, исследования взаимодействия и соотношения естеств. и искусств. языков и т. д. В связи с этим особую важность приобретают работы по изучению семантики таких терминов, как «система», «структура», «модель», «измерение», «вероятность», «факт», «теория» и т. д. Многозначность и различные способы их употребления, обнаружившиеся в связи с быстрым развитием кибернетики, структурной лингвистики, теории систем и т. п., делают логико-методологич. анализ необходимой предпосылкой эвристич. использования подобных понятий.
Последний период (с кон. 50-х гг.) был переломным для развития Л. н. не только вследствие осознания принципиальной ограниченности её неопозитивистской интерпретации, но также и в силу того, что в этот период были сделаны наиболее значит. шаги для распространения идей и методов логич. анализа на область социальных наук.
• Проблемы логики науч. познания, М., 1964; Логика науч. исследования, М., 1965; Π ο п о в и ч М. В., О филос. анализе языка науки, К., 1966; Копнин П. В., Логич. основы науки, К., 1968; Ракитов А. И., Анатомия науч. знания. (Популярное введение в логику и методологию науки), М., 1969; его ж е, Курс лекций по Л. н., М., 1971; его же, Филос. проблемы науки, М., 1977; Логико-филос. анализ понятийного аппарата науки, К., 1977; Логич. проблемы исследования науч. познания. Семантич. анализ языка. Сб. ст., М., 1980; Smart H. R., The logic of science, N. Υ.— L., 1931; Northrop F. S. С., The logic of the sciences and the humanities, N. Y., 1948; Popper K. R., The logic of scientific discovery, N. Y.—L., 1959; Harre R., An introduction to the logic of the sciences, L. — N. Y., 1966; Durbin P. R., Logic and scientific inquiry, Milwaukee, 1968; Agassi J., The logic of scientific inquiry «Synthese», 1974, v. 26, № 3—4, p. 498—514; Hesse М. В., The structure of scientific inference, Berk.— Los Ang., 1974; Trusted J., The logic of scientific interference. An introduction, L.— Basingstoke, 1979. А. И. Pакиmoв.
ЛОГИКА ОТНОШЕНИЙ, раздел логики, посвящённый изучению отношений между объектами различной природы. Эти отношения выражаются сказуемыми и аналогичными им словами в предложениях естеств. язы-
ков. В зависимости от числа объектов, связанных данным отношением, говорят о двуместных (двучленных, бинарных), трёхместных (трёхчленных, тернарных), вообще n-местных (n-членных, n-арных) отношениях, к-рые в терминах теории множеств определяются соответственно как классы упорядоченных пар, троек, ...n-ок предметов нек-рой предметной области. Особенно важны бинарные отношения (если пара <х,y> принадлежит отношению R, то говорят, что χ находится в отношении R к у), посредством к-рых определяются такие, напр., важнейшие понятия логики и математики, как понятия функции и операции. Вводя для бинарных отношений теоретико-множеств. операции объединения (суммы), пересечения (произведения) и дополнения, получают «алгебру отношений» (синоним термина «Л. о.»), роль единицы в к-рой играют отношения эквивалентности (равенства, тождества), обладающие свойствами рефлексивности (для всех x верно xRx), симметричности (из xRy следует yRx) и транзитивности (из xRy и yRz следует xRz). Теория бинарных отношений допускает геометрич. интерпретацию в виде т. н. теории графов. На языке совр. математич. логики понятие отношения выражается посредством понятия многоместного предиката; поэтому Л. о. (исключая упомянутые выше алгебраич. и геометрич. её аспекты) потеряла самостоят. значение и является по существу составной частью логики предикатов. * Шрейдер Ю. А., Равенство, сходство, порядок, М., 1971.
ЛОГИКА ПРЕДИКАТОВ,функциональная логика, квантор пая логика, осн. раздел математич. логики, средствами к-рого строятся многие др. её разделы. Л. п., в отличие от логики высказываний, расширением к-рой она является, учитывает не только связи между предложениями (высказываниями), но и их субъектно-предикатную структуру: выделяются аналоги подлежащих в предложениях естеств. языков (т. н. термы) и аналоги сказуемых — предикаты. Для этой цели выразит. средства логики высказываний пополняются спец. символами для обозначения предикатов и термов, а дедуктивные средства — правилами образования и преобразования выражений, содержащих эти символы. В Л. п. вводят также спец. операторы — кванторы. Аксиоматич. построение Л. п. в виде исчисления предикатов включает аксиомы и правила вывода, позволяющие преобразовывать кванторные формулы и строить формальные доказательства (напр., система аксиом и правил вывода для исчисления высказываний пополняется схемами аксиом).
Добавление к аппарату исчисления предикатов различных спец. постоянных и переменных термов с характеризующими полученную предметную область конкретными аксиомами и схемами аксиом приводит к различным видам прикладных исчислений предикатов, служащих формализациями различных логико-математич. теорий арифметики, алгебры, анализа, геометрии и др. разделов математики.
Для Л. п. и теорий, построенных на её основе, доказан ряд важных метатеорем, характеризующих их осн. свойства (см. Метатеория, Независимость, Непротиворечивость, Полпота).
* К лини С. К., Введение в метаматематику, пер. с англ., М., 1957 (библ.); Ч ё ρ ч А., Введение в математич. логику, пер. с англ., т. 1, М., 1960 (библ.); Мендельсон Э., Введение в математич. логику, пер. с англ., М., 1971; Новиков П. С., Элементы математич. логики, Μ., 19732.
ЛОГИСТИКА(греч. Λογιστική), 1) этап в развитии математич. логики, связанный с работами школы Б. Рассела (см. Логицизм); 2) архаический (идущий от Лейбница) синоним термина «математич. логика»; 3) в антич. математике под Л. понимали совокупность известных в то время вычислит.(в арифметике) и измерит. (в геометрии) алгоритмов — в отличие от развиваемой путём содержат. рассуждений «теоретич. математики». Под логистич. методом понимают метод построения формальной логики путём построения логистич. систем (иначе — исчислений, формальных систем).
* Ч ё ρ ч А., Введение в математич. логику, пер. с англ., т. 1,
ЛОГИЦИЗМ,направление в логико-филос. основаниях математики, исходящее из выдвинутого Лейбницем тезиса о «сводимости математики к логике», согласно к-рому математика изучает т. н. аналитич. истины, т. е. утверждения, «истинные во всех возможных мирах». В систематич. виде доктрина Л. была изложена Фреге в «Осн. законах арифметики» («Grundgesetze der Arithmetik», Bd 1—2, 1893—1903), где основное для математики понятие натурального числа сводилось к объёмам понятий, а теоремы арифметики доказывались средствами нек-рой логич. системы. Эта доктрина была развита затем Расселом, обнаружившим парадокс (противоречие) в системе Фреге и предложившим в совместном с Уайтхедом трёхтомном труде «Principia Mathematica» (1910—13) т. н. теорию типов, в к-рой этот (как и другие) парадокс устранялся с помощью спец. иерархии логич. понятий. Однако для построения классич. математики в «Principia Mathematica» пришлось включить аксиомы, не удовлетворяющие критериям аналитич. истинности и характеризующие конкретный «математич. мир» и описываемый им мир реальных вещей и событий. С др. стороны, Гёделъ показал (1931), что все системы типа «Principia Mathematica» и более сильные (т. е. во всяком случае все системы аксиоматич. арифметики и теории множеств) существенно неполны: их средствами нельзя доказать нек-рые формулируемые в них содержательно-истинные утверждения. Т. о., осн. тезис Л. можно считать опровергнутым. Однако работы Рассела и его последователей (напр., У. Куайна) способствовали формированию и уточнению ряда важнейших логико-математич. и методологич. идей и развитию соответствующего формального математич. аппарата.
• Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, гл. 3; Френкель А.,Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966, гл. 3.
ЛОГИЧЕСКИЕ ОПЕРАЦИИ,логич. операторы, логич. связки, функции, преобразующие выражения логич. исчислений (формальных логич. систем); подразделяются на пропозициональные (сен-тенциональные) связки, с помощью к-рых образуются выражения логики высказываний, и кванторы, введение к-рых позволяет расширить логику высказываний до логики предикатов. Л. о. позволяют строить сложные высказывания из нек-рых элементарных, подобно тому как союзы, союзные слова и обороты служат для построения сложных предложений из простых в естеств. языках. Напр., в классич. двузначной логике, в к-рой высказывания могут быть только либо истинными, либо ложными, Л. о. конъюнкции (обозначается — &) интерпретируется как союз «и» и его многочисл. синонимы и оттенки («а», «да», «но», «хотя», «между тем как», «а также», «кроме того» и т. д.); дизъюнкции ( ) — как один из смыслов («неразделительный») союза «или»; отрицание (┐) — как частица «не» и её языковые эквиваленты; импликации ( ) — примерно как обороты «если ..., то ...» и «из... следует...» или глагол «влечёт»; эквиваленции (~) — как оборот «тогда и только тогда, когда» и его синонимы и т. п. Соответствие это не взаимно-однозначно и приблизительно; поэтому точные определения Л. о. задаются не «переводами» их на естеств. языки, а либо посредством т. н. истинностных таблиц (или таблиц истинности), указывающих, какое из двух ис-тинностных значений — «и» («истина») или «л» («ложь») — принимает результат применения данной Л. о. к нек-рым исходным высказываниям при каждом конкретном распределении истинностных значений этих исходных высказываний, либо заданием
ЛОГИЧЕСКИЕ 321
надлежащих постулатов (логич. аксиом и правил вывода).
Изоморфная (см. Изоморфизм и гомоморфизм)интерпретируемость классич. логики высказываний в терминах логики классов обусловливает существование теоретико-множеств. операций, аналогичных каждой из её Л. о. в том смысле, что они подчиняются одним и тем же взаимным соотношениям и образуют булевы алгебры (соответственно алгебру высказываний и алгебру множеств; см. Алгебра логики). * Ч ё p ч А., Введение в математич. логику, пер. с англ., т. 1, М., 1960, §§ 05, 06, 15; С то л л Р.-Р., Множества. Логика. Аксиоматич. теории, пер. с, англ., М., 1968. ЛОГИЧЕСКИЕ ОШИБКИ,ошибки, связанные с нарушением в содержат. мыслит, актах законов и правил логики, а также с некорректным применением логич. приёмов и операций. В логике рассматриваются различные виды Л. о., возникающие в процедурах определения и деления понятий, в дедуктивных и индуктивных выводах, в доказательстве и т. п. Так, нарушение правил определения понятия приводит к ошибочным — несоразмерным, содержащим в себе порочный круг или тавтологию — дефинициям. Нарушение правил силлогизма приводит к логически неправомерным формам выводов, не обеспечивающим истинность заключения при условии истинности исходных посылок. Л. о. в доказательствах являются: подмена тезиса (ignoratio elenchi), ошибка, состоящая в неправильности умозаключений, на к-рых строится рассуждение, недоказанное основание доказательства (petitio prin-cipii), круг в доказательстве (circulus in demonstrando), тавтология в доказательстве (idem per idem) и др. Ошибками индукции могут быть поспешные обобщения, напр. на базе «простого» перечисления или заключение «после этого, значит по причине этого» (post hoc ergo propter hoc). Л. о., к-рые совершаются непреднамеренно, называются паралогизмами; совершаемые же преднамеренно — софизмами.
• Челпанов Г. И., Учебник логики, М., 1946; Асмус В. Ф., Учение логики о доказательстве и опровержении, [М.], 1954; Кондаков Н. И., Логич. словарь-справочник, M., 19752.
ЛОГИЧЕСКИЙ АТОМИЗМ, номиналистич. и плюра-листич. учение о действительности, выдвинутое Расселом и Витгенштейном в 10—20-х гг. 20 в. Программа Л. а. предусматривала построение логически совершенного языка, моделью к-рого объявлялся логич. язык. Один из осн. постулатов Л. а. — признание языка образом действительности: его предложения изображают сочетания объектов так же, напр., как проекция к.-л. геометрич. фигуры изображает эту фигуру. Л. а. рассматривал мир как совокупность лишь внешне связанных друг с другом атомарных фактов (т. е. не имеющих составных частей). Теория Л. а. отрицала всякую закономерную внутр. связь в действительности, сводя процесс познания к бесконечному описанию атомарных фактов. Несостоятельность Л. а. была настолько очевидна, что уже в 30-х гг. Рассел и Витгенштейн отказались от своей доктрины.
ЛОГИЧЕСКИЙ ЗАКОН,термин, применяемый в широком смысле для обозначения любой достаточно «общепринятой» нормы (закономерности) правильного рассуждения. В формализов. языках совр. логики (исчислениях) Л. з. соответствуют тождественно-истинные (общезначимые) формулы, в т. ч. аксиомы этих исчислений, а также постулируемые для них правила вывода. Из существования различных систем аксиом и правил вывода для логич. (и логико-математич.) исчислений следует, что понятие Л, з. относительно; но оно не является произвольным, поскольку выбор конкретной аксиоматич. системы обусловлен рядом объективных закономерностей природы и мышления.
В узком смысле слова Л. з. называются, следуя антич. и ср.-век. традиции, следующий законы мышле-
ЛОГИЧЕСКИЕ
ния: тождества («всякая сущность совпадает сама с собой»), противоречия («никакое суждение не может одновременно быть истинным и ложным»), исключённого третьего («для произвольного высказывания либо оно само, либо его отрицание истинно») и достаточного основания («всякое принимаемое суждение должно быть надлежащим образом обосновано»). Согласно совр. представлениям, принципы тождества и достаточного основания принадлежат скорее не логике, а теории познания и методологии науки. Принципы исключённого третьего и противоречия относятся собственно к логике, где играют, однако, различную роль: если «общепринятый» для традиц. логики принцип исключённого третьего для ряда логич. исчислений отвергается (см. Интуиционизм, Конструктивная логика), то принцип противоречия не только доказуем в любой содержательно-интерпретируемой логич. системе, но и лежит фактически в основе всей совр. формальной логики (см. Непротиворечивость).
* Войшвилло Е. К., Логич. следование, связки и законы логики, в кн.: Модальные и интенсиональные логики, Μ., 1978.
ЛОГИЧЕСКИЙ ПОЗИТИВИЗМ,течение неопозитивизма, возникшее в 20-х гг. 20 в. на основе Венского кружка (Р. Карнан, О. Нейрат, Ф. Франк, Г. Фейгль, X. Рейхенбах и др.). Л. п. выступает как преемник позитивистской субъективно-идеалистич. традиции, идущей от Беркли, Юма и махизма. Вместе с тем логич. позитивисты отказываются от характерного для старого позитивизма и дискредитировавшего себя психо-логич. и биологич. подхода к познанию и пытаются сочетать субъективно-идеалистич. эмпиризм с методом логич. анализа. Подобная ориентация Л. п. связана с реальными проблемами науки 20 в. — всё большим осознанием роли знаково-символич. средств, с тенденциями возрастающей математизации и формализации знания, с выявлением зависимости способов рассмотрения действительности от типа языка и т. д. Однако ати сложные и актуальные проблемы трактуются Л. п. в духе субъективизма и конвенционализма. Знаково-символич. средства и языковые формы познания превращаются в Л. п. в некий абсолют, а выход филос.-методологич. анализа за их пределы расценивается как неправомерная «метафизика». Подлинно науч. философия, согласно Л. п., возможна только как логич. анализ языка науки, к-рый должен быть направлен, с одной стороны, па устранение «метафизики» (т. е. традиц. философии), с другой — на исследование логич. строения науч. знания с целью выявления «непосредственно данного» или эмпирически проверяемого содержания науч. понятий и утверждений. Конечная цель такого исследования усматривалась в реорганизации науч. знания в системе «единой науки», к-рая в соответствии с пози-тивистско-феноменалистским представлением о природе познания должна была бы давать описание «непосредственно данного». Для Л. п. был характерен ярко выраженный сциентизм, согласно к-рому специально-науч. познание (понимаемое при этом в духе позитивизма, феноменализма и узкого эмпиризма) является единственно возможным типом научно-теоретической деятельности и само по себе обеспечивает достаточные основания для выработки всеобъемлющего мировоззрения.