Прижми к груди свое дитя! Но — бережно, чтоб не разбилась склянка. Вот неизбежная вещей изнанка: Природному Вселенная тесна, Искусственному же замкнутость нужна! 2 страница

В сильно неравновесных условиях понятие вероятности, лежащее в основе больцмановского принципа порядка, становится неприменимым: наблюдаемые структуры не соответствуют максимуму комплексов. Не соответствует максимум комплексов и минимуму свободной энергии F=E-TS. Тенденция к выравниванию и «забыванию» начальных условий перестает быть общей тенденцией. В этом смысле старая проблема происхождения жизни предстает в ином свете. Заведомо ясно, что жизнь несовместима с принципом порядка Больцмана, но не противоречит тому типу поведения, который устанавливается в сильно неравновесных условиях.

Классическая термодинамика приводит к понятию равновесной структуры, примером которой может служить любой кристалл. Ячейки Бенара также представляют собой структуры, но совершенно иной природы. Именно поэтому мы ввели новое понятие — диссипативная структура, чтобы подчеркнуть тесную и на первый взгляд парадоксальную взаимосвязь, существующую в таких ситуациях, с одной стороны, между структурой и порядком, а с другой — между диссипацией, или потерями. В гл. 4 мы видели, что в классической термодинамике тепловой поток считался источником потерь. В ячейке Бенара тепловой поток становится источником порядка.

Таким образом, взаимодействие системы с внешним миром, ее погружение в неравновесные условия может стать исходным пунктом в формировании новых динамических состояний — диссипативных структур. Диссипативная структура отвечает некоторой форме супермолекулярной организации. Хотя параметры, описывающие кристаллические структуры, могут быть выведены из свойств образующих их молекул, и в частности из радиуса действия сил взаимного притяжения и отталкивания, ячейки Бенара, как и все диссипативные структуры, по существу, отражают глобальную ситуацию в порождающей их неравновесной системе. Описывающие их параметры макроскопические — порядка не 10-8см (как расстояния между молекулами в кристалле), а нескольких сантиметров. Временные масштабы также другие: они соответствуют не молекулярным масштабам (например, периодам колебаний отдельных молекул, т. е. порядка 10-15с), а макроскопическим, т. е. секундам, минутам или часам.

Но вернемся к химическим реакциям. Они обладают некоторыми весьма важными отличиями от проблемы Бенара. В ячейке Бенара неустойчивость имеет простое механическое происхождение. Когда мы нагреваем жидкость снизу, нижний слой жидкости становится менее плотным и центр тяжести перемещается вверх. Неудивительно поэтому, что за критической точкой система «опрокидывается» и возникает конвекция.

Химические системы не обладают такого рода механическими свойствами. Можно ли ожидать явления самоорганизации в химических системах? Мысленно мы представляем себе химические реакции так: во всех направлениях в пространстве несутся молекулы веществ и случайным образом сталкиваются. В такой картине не остается места для самоорганизации, и, быть может, в этом заключается одна из причин, по которым химические неустойчивости лишь недавно начали привлекать внимание исследователей. Имеется и еще одно отличие.

Прижми к груди свое дитя! Но — бережно, чтоб не разбилась склянка. Вот неизбежная вещей изнанка: Природному Вселенная тесна, Искусственному же замкнутость нужна! 2 страница - student2.ru

Рис. 4. Каталитические петли соответствуют нелинейным членам. В задаче с одной независимой переменной нелинейность означает, что имеется по крайней мере один член, содержащий независимую переменную в степени выше 1. В этом простейшем случае нетрудно проследить за тем, какая связь существует между нелинейными членами и потенциальной неустойчивостью стационарных состояний.

Предположим, что для независимой переменной Х выполняется эволюционное уравнение dX/dt=f(X). Функцию f(X) всегда можно разложить в разность двух функций: f+(X), соответствующую прибыли («наработке» вещества), и f-(X), соответствующую убытку (расходу вещества), каждая из которых положительна или равна 0, т. е. представить в виде f(X)=f+(X)-f-(X). Стационарные состояния dX/dt=0 соответствуют значениям X, при которых f+(X)=f-(X).

Равенство f+(X)=f-(X) означает, что стационарные состояния можно найти, построив точки пересечения графиков функций f+ и f-. Если f+ и f- линейны, то их графики могут пересекаться только в одной точке. В противном случае характер пересечения позволяет сделать выводы об устойчивости соответствующего стационарного состояния.

Возможны следующие четыре случая:

SI. Стационарное состояние устойчиво относительно отрицательных флуктуации и неустойчиво относительно положительных флуктуации. Если систему слегка отклонить влево от SI, то положительная разность между f+ и f- вынудит систему вернуться в SI. Если же систему отклонить вправо от SI, то отклонение будет нарастать.

SS. Стационарное состояние устойчиво как относительно положительных, так и относительно отрицательных флуктуации.

IS. Стационарное состояние устойчиво только относительно положительных флуктуаций.

II. Стационарное состояние неустойчиво как относительно положительных, так и относительно отрицательных флуктуаций.

Все течения достаточно далеко от равновесия становятся турбулентными (порог измеряется в безразмерных числах, например в числах Рейнольдса). Химические реакции ведут себя иначе. Для них большая удаленность от состояния равновесия — условие необходимое, но не достаточное. Во многих химических системах, какие бы связи на них ни накладывались и как бы ни изменялись скорости реакций, стационарное состояние остается устойчивым и произвольные флуктуации затухают, как в слабо неравновесной области. В частности, так обстоит дело в системах, в которых наблюдается цепь последовательных превращений типа A->B->C->D->…, описываемая линейными дифференциальными уравнениями.

Судьба флуктуаций, возмущающих химическую систему, а также новые ситуации, к которым она может эволюционировать, зависят от детального механизма химических реакций. В отличие от систем в слабо неравновесной области поведение сильно неравновесных систем весьма специфично. В сильно неравновесной области не существует универсального закона, из которого можно было бы вывести заключение относительно поведения всех без исключения систем. Каждая сильно неравновесная система требует особого рассмотрения. Каждую систему химических реакций необходимо исследовать особо — поведение ее может быть качественно отличным от поведения других систем.

Тем не менее один общий результат все же был получен, а именно: выведено необходимое условие химической неустойчивости. В цепи химических реакций, происходящих в системе, устойчивости стационарного состояния могут угрожать только стадии, содержащие автокаталитические петли, т. е. такие стадии, в которых продукт реакции участвует в синтезе самого себя. Этот вывод интересен тем, что вплотную подводит нас к фундаментальным достижениям молекулярной биологии (рис. 4).

4. За порогом химической неустойчивости
Изучение химических неустойчивостей в наши дни стало довольно обычным делом. И теоретические, и экспериментальные исследования ведутся во многих институтах и лабораториях. Как мы увидим, эти исследования представляют интерес для широкого круга ученых — не только для математиков, физиков, химиков и биологов, но и для экономистов и социологов.

В сильно неравновесных условиях за порогом химической неустойчивости происходят различные новые явления. Для того чтобы описать их подробно, полезно начать с упрощенной теоретической модели, разработанной в последнее десятилетие в Брюсселе. Американские ученые назвали эту модель «брюсселятором», и это название так и прижилось в научной литературе. (Географические ассоциации, по-видимому, стали правилом в этой области: помимо «брюсселятора», существует «оре-гонатор» и даже самый юный «палоальтонатор»!) Опишем кратко «брюсселятор». Ранее мы уже отмечали те стадии реакции, которые ответственны за неустойчивость (см. рис. 3). Вещество Х образуется из вещества А и превращается в вещество Е. Оно является «партнером» по кросс-катализу вещества Y: Х образуется из Y в результате тримолекулярной стадии, а Y образуется в результате реакции между Х и веществом В.

В этой модели концентрации веществ A, В, D и Е заданы (и являются так называемыми управляющими параметрами). Поведение системы исследуется при возрастающих значениях В. Концентрация А поддерживается постоянной. Стационарное состояние, к которому с наибольшей вероятностью эволюционирует такая система (состояние с dX/dt=dY/dt=0), соответствует концентрациям Х0=А и Y0=B/A. В этом нетрудно убедиться, если выписать кинетические уравнения и найти стационарное состояние. Но как только концентрация В переходит критический порог (при прочих равных параметрах), это стационарное состояние становится неустойчивым. При переходе через критический порог оно становится неустойчивым фокусом, и система, выходя из этого фокуса, выходит, или «наматывается», на предельный цикл. Вместо того чтобы оставаться стационарными, концентрации Х и Y начинают колебаться с отчетливо выраженной периодичностью. Период колебаний зависит от кинетических постоянных, характеризующих скорость реакции, и граничных условий, наложенных на всю систему (температуры, концентрации веществ A, B и т. д.).

За критическим порогом система под действием флуктуаций спонтанно покидает стационарное состояние Х0=A, Y0=В/A. При любых начальных условиях она стремится выйти на предельный цикл, периодическое движение по которому устойчиво. В результате мы получаем периодический химический процесс — химические часы. Остановимся на мгновение, чтобы подчеркнуть, сколь неожиданно такое явление. Предположим, что у нас имеются молекулы двух сортов: «красные» и «синие». Из-за хаотического движения молекул можно было бы ожидать, что в какой-то момент в левой части сосуда окажется больше красных молекул, в следующий момент больше станет синих молекул и т. д. Цвет реакционной смеси с трудом поддается описанию: фиолетовый с беспорядочными переходами в синий и красный. Иную картину мы увидим, разглядывая химические часы: вся реакционная смесь будет иметь синий цвет, затем ее цвет резко изменится на красный, потом снова на синий и т. д. Поскольку смена окраски происходит через правильные интервалы времени, мы имеем дело с когерентным процессом.

Столь высокая упорядоченность, основанная на согласованном поведении миллиардов молекул, кажется неправдоподобной, и, если бы химические часы нельзя было бы наблюдать «во плоти», вряд ли кто-нибудь поверил, что такой процесс возможен. Для того чтобы одновременно изменить свой цвет, молекулы должны «каким-то образом» поддерживать связь между собой. Система должна вести себя как единое целое. К ключевому слову «связь», обозначающему весьма важное для многих областей человеческой деятельности (от химии до нейрофизиологии) понятие, мы будем еще возвращаться неоднократно. Возможно, что именно диссипативные структуры представляют собой один из простейших физических механизмов связи (communication).

Между простейшим механическим осциллятором — пружиной — и химическими часами имеется важное различие. Химические часы обладают вполне определенной периодичностью, соответствующей тому предельному циклу, на который наматывается их траектория. Что же касается пружины, то частота ее колебаний зависит от амплитуды. С этой точки зрения химические часы как хранители времени отличаются большей надежностью, чем пружина.

Но химические часы — отнюдь не единственный тип самоорганизации. До сих пор мы пренебрегали диффузией. В своих рассуждениях мы неизменно предполагали, что все вещества равномерно распределены по всему реакционному пространству. Разумеется, такое допущение не более чем идеализация: небольшие флуктуации всегда создают неоднородности в распределении концентраций и, следовательно, способствуют возникновению диффузии. Следовательно, в уравнениях, описывающих химические реакции, необходимо учитывать диффузию. Уравнения типа «реакция с диффузией» для «брюсселятора» обладают необычайно богатым запасом решений, отвечающих качественно различным типам поведения системы. Если в равновесном и в слабо неравновесном состояниях система остается пространственно однородной, то в сильно неравновесной области появление новых типов неустойчивости, в том числе усиление флуктуаций, нарушает начальную пространственную симметрию. Таким образом, колебания во времени (химические часы) перестают быть единственным типом диссипативных структур, которые могут возникать в системе; в сильно неравновесной области могут появиться, например, колебания не только временные, но и пространственно-временные. Они соответствуют волнам концентраций химических веществ Х и Y, периодически проходящим по системе. Кроме того, в системе, особенно в тех случаях, когда коэффициенты диффузии веществ Х и Y сильно отличаются друг от друга, могут устанавливаться стационарные, не зависящие от времени режимы и возникать устойчивые пространственные структуры.

Здесь нам необходимо еще раз остановиться: на этот раз для того, чтобы подчеркнуть, как сильно спонтанное образование пространственных структур противоречит законам равновесной физики и принципу порядка Больцмана. И в этом случае число комплексов, соответствующих таким структурам, чрезвычайно мало по сравнению с числом комплексов, отвечающих равномерному распределению. Но неравновесные процессы могут приводить к ситуациям, кажущимся немыслимыми с классической точки зрения.

При переходе от одномерных задач к двухмерным или трехмерным число качественно различных диссипативных структур, совместимых с заданным набором граничных условий, возрастает еще больше. Например, в двухмерной области, ограниченной окружностью, может возникнуть пространственно неоднородное стационарное состояние с выделенной осью. Перед нами новый, необычайно интересный процесс нарушения симметрии, особенно если мы вспомним, что одна из первых стадий в морфогенезе зародыша — образование градиента в системе. Такого рода проблемы мы еще рассмотрим и в этой главе, и в гл. 6.

До сих пор мы предполагали, что концентрации А, В, D и Е (наши управляющие параметры) равномерно распределены по всей реакционной системе. Стоит лишь нам отказаться от этого упрощения, как возникают новые явления. Например, система принимает «естественные размеры», зависящие от определяющих параметров. Тем самым система определяет свой внутренний масштаб, т. е. размеры области, занятой пространственными структурами, или часть пространства, в пределах которой проходят периодические волны концентраций.

Все перечисленные выше режимы дают весьма неполную картину необычайного многообразия явлений, возникающих в сильно неравновесной области. Упомянем хотя бы о множественности стационарных состояний. При заданных граничных условиях в сильно нелинейной системе могут существовать не одно, а несколько стационарных состояний, например одно состояние с богатым содержанием вещества X, а другое — с бедным содержанием того же вещества. Переход из одного состояния в другое играет важную роль в механизмах управления, встречающихся в биологических системах.

Начиная с классических работ Ляпунова и Пуанкаре, некоторые характерные точки и линии, а именно фокусы и предельные циклы, известны математикам как аттракторы устойчивых систем. Новым является то, что эти понятия качественной теории дифференциальных уравнений применимы к химическим системам. В этой связи заслуживает быть особо отмеченным тот факт, что первая работа по математической теории неустойчивостей в системе реакций с диффузией была опубликована Тьюрингом в 1952 г. Сравнительно недавно были обнаружены новые типы аттракторов. Они появляются только при большем числе независимых переменных (в «брюсселяторе» число независимых переменных равно двум: это переменные концентрации Х и Y). В частности, в трехмерных системах появляются так называемые странные аттракторы, которым уже не соответствует периодическое движение.

На рис. 8 представлены результаты численных расчетов Хао Байлиня, дающие общее представление об очень сложной структуре такого странного аттрактора для модели, обобщающей «брюсселятор» на случай периодического подвода извне вещества X. Замечательно, что большинство описанных нами типов поведения реально наблюдалось в неорганической химии и в некоторых биологических системах.

В неорганической химии наиболее известным примером колебательной системы является реакция Белоусова-Жаботинского, открытая в начале 50-х гг. нашего века. Соответствующая схема реакций, получившая название орегонатор, была предложена Нойесом и сотрудниками. По существу, она аналогична «брюсселятору», но отличается большей сложностью. Реакция Белоусова-Жаботинского состоит в окислении органической (малоновой) кислоты броматом калия в присутствии соответствующего катализатора — церия, марганца или ферроина.

В различных экспериментальных условиях у одной и той же системы могут наблюдаться различные формы самоорганизации — химические часы, устойчивая пространственная дифференциация или образование волн химической активности на макроскопических расстояниях5.

Обратимся теперь к самому интересному вопросу: что дают все эти результаты для понимания функционирования живых систем?

5. Первое знакомство с молекулярной биологией
Ранее в этой главе мы уже показали, что в сильно неравновесных условиях протекают процессы самоорганизации различных типов. Одни из них приводят к установлению химических колебаний, другие — к появлению пространственных структур. Мы видели, что основным условием возникновения явлений самоорганизации является существование каталитических эффектов.

В то время как в неорганическом мире обратная связь между «следствиями» (конечными продуктами) нелинейных реакций и породившими их «причинами» встречается сравнительно редко, в живых системах обратная связь (как установлено молекулярной биологией), напротив, является скорее правилом, чем исключением. Автокатализ (присутствие вещества Х ускоряет процесс образования его в результате реакции), автоингибиция (присутствие вещества Х блокирует катализ, необходимый для производства X) и кросс-катализ (каждое из двух веществ, принадлежащих различным цепям реакций, является катализатором для синтеза другого) лежат в основе классического механизма регуляции, обеспечивающего согласованность метаболической функции.

Нам бы хотелось подчеркнуть одно любопытное различие. В примерах самоорганизации, известных из неорганической химии, молекулы, участвующие в реакциях, просты, тогда как механизмы реакций сложны (например, в реакции Белоусова-Жаботинского удалось установить около тридцати различных промежуточных соединений). С другой стороны, во многих примерах самоорганизации, известных из биологии, схема реакции проста, тогда как молекулы, участвующие в реакции веществ (протеинов нуклеиновых кислот и т. д.), весьма сложны и специфичны. Отмеченное нами различие вряд ли носит случайный характер. В нем проявляется некий первичный элемент, присущий различию между физикой и биологией. У биологических систем есть прошлое. Образующие их молекулы — итог предшествующей эволюции; они были отобраны для участия в автокаталитических механизмах, призванных породить весьма специфические формы процессов организации.

Описание сложной сети метаболической активности и торможения является существенным шагом в понимании функциональной логики биологических систем. К последней мы относим включение в нужный момент синтеза необходимых веществ и блокирование тех химических реакций, неиспользованные продукты которых могли бы угрожать клетке переполнением.

Основной механизм, с помощью которого молекулярная биология объясняет передачу и переработку генетической информации, по существу, является петлей обратной связи, т. е. нелинейным механизмом. Дезоксирибонуклеиновая кислота (ДНК), содержащая в линейно упорядоченном виде всю информацию, необходимую для синтеза различных основных протеинов (без которых невозможно строительство и функционирование клетки), участвует в последовательности реакций, в ходе которых вся информация кодируется в виде определенной последовательности различных протеинов. Некоторые ферменты осуществляют обратную связь среди синтезированных протеинов, активируя и регулируя не только различные стадии превращений, но и автокаталитический механизм репликации ДНК, позволяющий копировать генетическую информацию с такой же скоростью, с какой размножаются клетки.

Молекулярная биология — один из наиболее ярких примеров конвергенции двух наук. Понимание процессов, происходящих на молекулярном уровне в биологических системах, требует взаимно дополняющего развития физики и биологии, первой — в направлении сложного, второй — простого.

Фактически уже сейчас физика имеет дело с исследованием сложных ситуаций, далеких от идеализации, описываемых равновесной термодинамикой, а молекулярная биология добилась больших успехов в установлении связи живых структур с относительно небольшим числом основных биомолекул. Исследуя множество самых различных химических механизмов, молекулярная биология установила мельчайшие детали цепей метаболических реакций, выяснила тонкую, сложную логику регулирования, ингибирования и активации каталитической функции ферментов, связанных с критическими стадиями каждой из метаболических цепей. Тем самым молекулярная биология установила на микроскопическом уровне основы тех неустойчивостей, которые могут происходить в сильно неравновесных условиях.

В некотором смысле живые системы можно сравнить с хорошо налаженным фабричным производством: с одной стороны, они являются вместилищем многочисленных химических превращений, с другой — демонстрируют великолепную пространственно-временную организацию с весьма неравномерным распределением биохимического материала. Ныне перед нами открывается возможность связать воедино функцию и структуру. Рассмотрим кратко два примера, интенсивно исследовавшиеся в последние годы.

Начнем с гликолиза: цепи метаболических реакций, приводящих к расщеплению глюкозы и синтезу аденозинтрифосфата (АТФ) — универсального аккумулятора энергии, общего для всех живых клеток. При расщеплении каждой молекулы глюкозы две молекулы АДФ (аденозиндифосфата) превращаются в две молекулы АТФ. Гликолиз может служить наглядным примером взаимной дополнительности аналитического подхода биологии и физического исследования устойчивости в сильно неравновесной области6.

В ходе биохимических экспериментов были обнаружены колебания во времени концентраций, связанных с гликолитическим циклом7. Было показано, что эти колебания определяются ключевой стадией в цепи реакций — стадией, активируемой АДФ и ингибируемой АТФ. Это — типично нелинейное явление, хорошо приспособленное к регулированию метаболизма. Всякий раз, когда клетка черпает энергию из своих энергетических резервов, она использует фосфатные связи, и АТФ превращается в АДФ. Таким образом, накопление АДФ внутри клетки свидетельствует об интенсивном потреблении энергии и необходимости пополнить энергетические запасы, в то время как накопление АТФ означает, что расщепление глюкозы может происходить в более медленном темпе.

Теоретическое исследование гликолиза показало, что предложенный механизм действительно может порождать концентрационные колебания, т. е. обеспечивать работу химических часов. Вычисленные из теоретических соображений значения концентраций, необходимые для возникновения колебаний, и величина периода цикла согласуются с экспериментальными данными. Гликолитические колебания вызывают модуляцию всех энергетических процессов в клетке, зависящих от концентрации АТФ, и, следовательно, косвенно влияют на другие метаболические цепи.

Можно пойти еще дальше и показать, что в гликолитическом цикле ход реакций регулируется некоторыми ключевыми ферментами, причем сами реакции протекают в сильно неравновесных условиях. Такие расчеты были выполнены Бенно Хессом8, а полученные результаты обобщены и на другие системы. При обычных условиях; гликолитический цикл соответствует химическим часам, но изменение этих условий может привести к образованию пространственных структур в полном соответствии с предсказаниями на основе существующих теоретических моделей.

С точки зрения термодинамики живая система отличается необычайной сложностью. Одни реакции протекают в слабо неравновесных условиях, другие — в сильно неравновесных условиях. Не все в живой системе «живо». Проходящий через живую систему поток энергии несколько напоминает течение реки — то спокойной и плавной, то низвергающейся водопадом и высвобождающей часть накопленной в ней энергии.

Рассмотрим еще один биологический процесс, также исследованный «на устойчивость»: образование колоний у коллективных амеб Dictyostelium discoideum. Этот процесс9А интересен как пример явления, пограничного между одноклеточной и многоклеточной биологией.

Образование колоний у коллективных амеб — один из наиболее ярких примеров явления самоорганизации в биологической системе, в которой важную роль играют химические часы (см. рис. А).

Выйдя из спор, амебы растут и размножаются как одноклеточные организмы. Так продолжается до тех пор, пока пищи (главным образом, бактерий) достаточно. Как только пищевой ресурс истощается, амебы перестают репродуцироваться и вступают в промежуточную фазу, которая длится около восьми часов. К концу этого периода амебы начинают сползаться к отдельным клеткам, выполняющим функции центров агрегации. Образование многоклеточных колоний, ведущих себя как единый организм, происходит в ответ на хемотаксические сигналы, испускаемые центрами. Сформировавшаяся колония мигрирует до тех пор, пока не обнаружит участок среды с условиями, пригодными для образования плодового тела. Тогда масса клеток начинает дифференцироваться, образуя стебель, несущий на конце мириады спор.

У Dictyostelium. discoideum сползание одноклеточных амеб в многоклеточную колонию происходит не монотонно, а периодически. Как показывает киносъемка процесса образования колоний, существуют концентрические волны амеб, сходящиеся к центру с периодом в несколько минут. Природа хемотаксического фактора известна. Это циклическая АМФ (цАМФ) — вещество, встречающееся во многих биохимических процессах, например в процессах гормональной регуляции. Центры скопления амеб периодически испускают сигналы — порции цАМФ, на которые другие клетки реагируют, перемещаясь к центру и в свою очередь испуская аналогичные сигналы к периферии территории, занимаемой колонией. Существование такого механизма передачи хемотаксических сигналов позволяет каждому центру контролировать колонию, состоящую примерно из 105 амеб.

Как показывает анализ модели образования многоклеточной колонии, существуют два типа бифуркаций: во-первых, агрегация сама по себе представляет нарушение пространственной симметрии; во-вторых, происходит нарушение временной симметрии.

Первоначально амебы распределены равномерно. Когда некоторые из них начинают испускать хемотаксические сигналы, возникают локальные флуктуации в концентрации цАМФ. При достижении критического значения некоторого параметра системы (коэффициента диффузии цАМФ, подвижности амеб и т.д.) флуктуации усиливаются: однородное распределение становится неустойчивым и амебы эволюционируют к неоднородному распределению в пространстве. Это новое распределение соответствует скоплению амеб вокруг центров.

Для того чтобы понять происхождение периодичности в сползании D. discoideum к центрам, необходимо изучить механизм синтеза хемотаксического сигнала. На основе экспериментальных данных этот механизм можно изобразить в виде следующей схемы (рис. В).

На поверхности клетки рецепторы (Р) захватывают молекулы цАМФ. Рецептор обращен во внеклеточную среду и функционально связан с ферментом аденилатциклазой (Ц), преобразующим внутриклеточную АТФ в цАМФ (на рис. цАМФ не обозначена). Синтезированная цАМФ транспортируется через мембрану во внеклеточную среду, где расщепляется фосфодиэстеразой — ферментом, выделяемым амебами. Эксперименты показывают, что захват внемолекулярной цАМФ мембранным рецептором активирует аденилатциклазу (положительная обратная связь обозначена знаком +).

Анализ модели синтеза цАМФ на основе такой автокаталитической регуляции позволил унифицировать различные типы поведения, наблюдаемые при образовании колонии коллективных амеб9В.

Двумя ключевыми параметрами модели являются концентрации аденилатциклазы (s) и фосфодиэстеразы (k). На рис. С, заимствованном из работы Goldbeter A., Segel L.. Differentiation, 1980, 17, p. 127-135, показано поведение модельной системы в пространстве параметров s и k.

В зависимости от значений s и k все пространство этих параметров подразделяется на три области. Область А соответствует устойчивому, невозбудимому стационарному состоянию, область В — устойчивому, но возбудимому стационарному состоянию и область С — режиму незатухающих колебаний вокруг неустойчивого стационарного состояния.

Стрелка указывает возможный «путь развития», соответствующий повышению концентрации фосфодиэстеразы (k) и аденилатциклазы (s), наблюдаемому после начала голодания. Переход из области А в области В и С соответствует наблюдаемым изменениям в поведении: клетки сначала неспособны реагировать на сигналы — внеклеточную цАМФ, затем начинают передавать сигналы дальше и, наконец, обретают способность автономно синтезировать цАМФ в периодическом режиме. Центры колоний являются клетками, для которых параметры k и s быстрее достигают точки внутри области С после начала голодания.

Когда запас питательных веществ в той среде, в которой живут и размножаются коллективные амебы, иссякает, происходит удивительная перестройка (рис. А): отдельные клетки начинают соединяться в колонию, насчитывающую несколько десятков тысяч клеток. Образовавшийся «псевдоплазмодий» претерпевает дифференциацию, причем очертания его непрерывно изменяются. Образуется «ножка», состоящая примерно из трети всех клеток, с избыточным содержанием целлюлозы. Эта «ножка» несет на себе круглую «головку», наполненную спорами, которые отделяются и распространяются. Как только споры приходят в соприкосновение с достаточно питательной средой, они начинают размножаться и образуют новую колонию коллективных амеб. Перед нами наглядный пример приспособления к окружающей среде. Популяция обитает в некоторой области до тех пор, пока не исчерпывает имеющиеся там ресурсы. Затем она претерпевает метаморфозу, в результате которой обретает способность передвигаться и осваивать другие области.

Наши рекомендации