Признак перпендикулярности прямой и плоскости.

рис. 40 Теорема. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.

Замечания.

1. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой, и притом единственная.

2. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

3. Если две плоскости перпендикулярны к прямой, то они параллельны.

4. Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и самой наклонной.

Пусть АВ - перпендикуляр плоскости , АС - наклонная и с - прямая в плоскости , проходящая через основание С.
Проведем прямую СA1, параллельную прямой АВ. Она перпендикулярна плоскости . Проведем через прямые АВ и СA1 плоскость . Прямая сперпендикулярна прямой СA1. Если она перпендикулярна прямой СВ, то она перпендикулярна плоскости , а значит, и прямой АС.
АНАЛОГИЧНО. Если прямая с перпендикулярна наклонной АС то она, будучи перпендикулярна и прямой СA1 перпендикулярна плоскости , а значит, и проекции наклонной СВ. Теорема доказан

Обратно: Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной

Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а, и не принадлежащими одной плоскости.

рис. 44 а - ребро двугранного угла, полуплоскости - грани его.
рис. 45 Угол АОВ - линейный угол двугранного угла. Чтобы его построить, нужно выбрать произвольную точку О на ребре, а лучи ОА и ОВ должны быть перпендикулярны к ребру.

Определение. Градусной мерой двугранного угла называется градусная мера любого из его линейных углов.

рис. 46 Двугранный угол называется прямым (острым, тупым), если он равен 90o (меньше 90o, больше 90o). Пусть - тот из углов, который не превосходит любого из трёх остальных углов. Тогда угол между пересекающимися плоскостями равен . (0o< 90o)

Определение. Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен 90o.

Признак перпендикулярности двух плоскостей.

рис. 47 Если одна из двух плоскостей ( ) проходит через прямую (а), перпендикулярную другой плоскости ( ), то такие плоскости перпендикулярны.
рис. 48 Прямоугольный параллелепипед. Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основаниям, а основания представляют собой прямоугольники.

Свойства.

1. В прямоугольном параллелепипеде все шесть граней представляют собой прямоугольники.

2. Все двугранные углы прямоугольного параллелепипеда являются прямыми

3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Плоская фигура

Теорема. Площадь ортогональной проекции плоской фигуры на плоскость есть произведение площади самой фигуры на косинус угла между плоскостью фигуры и плоскостью проекции.
Доказательство. Докажем теорему на примере треугольника. Пусть дана плоскость a и треугольник АВС. Рассмотрим общий случай, когда плоскость a и плоскость треугольника лежат под некоторым острым углом друг к другу. Для упрощения решения плоскость aпроведем через одну из сторон треугольника, например сторону АВ. Значит после проектирования точки А и В передут в себя, а точка С переедет в точку К. В треугольнике АВС проведем высоту СН из вершины С. В треугольнике АВК соединим точки К и Н. Прямая КН перпендикулярна прямой АВ (КН – проекция прямой СН на плоскость a, СН ^ АВ,? КН ^ АВ по теореме о трех перпендикулярах). Таким образом, угол СНК – двугранный угол между плоскостями, обозначим его за b. Выразим площадь треугольников АВС и АВК и найдем их отношение:
Рассмотрим два равных многоугольника и , расположенных в параллельных плоскостях и так, чтобы отрезки , соединяющие соответственные вершины многоугольников, параллельны (рис. 1).

Каждый из n четырехугольников

…, (1)

является параллелограммом, так как имеет попарно параллельные противоположные стороны.

Многогранник, составленный из двух равных многоугольников и , расположенных в параллельных плоскостях, и n параллелограммов (1), называется призмой.

Многоугольники и называются основаниями, а параллелограммы (1) – боковыми гранями призмы. Отрезки называются боковыми ребрами призмы. Эти ребра как противоположные стороны параллелограммов (1), следовательно приложенных друг к другу, равны и параллельны. Призму с основаниями и называют n – угольной призмой. На рисунке 2 изображены треугольная и шестиугольная призмы.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

Быстрый поиск по Банку Рефератов: | Описание работы | Похожие работы

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Прямая призма называется правильной, если ее основания – правильные многоугольники. У такой призмы все боковые грани – равные прямоугольники. На рисунке 2 изображена правильная шестиугольная призма. [1, 62]

Понятие параллелепипеда

Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани – параллелограммы.

На рисунке 3 изображен наклонный параллелепипед, а на рисунке 4 – прямой параллелепипед.


Грани параллелепипеда, не имеющие общих вершин, называются противолежащими. [4, 301]

Параллелепипед, боковые ребра которого перпендикулярны к плоскости основания, называется прямым параллелепипедом. У него все боковые грани прямоугольники, а основания параллелограммы. Если все грани параллелепипеда – прямоугольники, то его называют прямоугольным параллелепипедом. Длины трех его ребер, которые выходят из одной вершины, называются измерениями прямоугольного параллелепипеда.

Прямоугольный параллелепипед, все три измерения которого равны, называется кубом. Соотношение между различными видами параллелепипеда приведено в схеме: [2, 115]

Свойства параллелепипеда

Теорема:

У параллелепипеда:

1) противолежащие грани равны и параллельны;

2) все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

Доказательство:

1) Рассмотрим какие-нибудь две противоположные грани параллелепипеда, например, и (рис. 5).

Поскольку все грани параллелепипеда – параллелограммы, то прямая AD параллельна прямой ВС, а прямая параллельна прямой . Отсюда следует, что плоскости рассматриваемых граней параллельны.

Из того, что грани параллелепипеда – параллелограммы, следует, что АВ, , CD и параллельны и равны. Отсюда сделаем вывод, что грань совмещается параллельным переносом вдоль ребра АВ с гранью . Следовательно, эти грани равны.

2) Возьмем две диагонали параллелепипеда (рис. 5), например, и , и проведем дополнительные прямые и . АВ и соответственно равны и параллельны ребру DC, поэтому они равны и параллельны между собою; вследствии этого фигура есть параллелограмм, в котором прямые и – диагонали, а в параллелограмме диагонали делятся в точке пересечения пополам. Аналогично мы можем доказать, что две другие диагонали пересекаются в одной точке и делятся этой точкой пополам. Точка пересечения каждой пары диагоналей лежит в середине диагонали . Таким образом, все четыре диагонали параллелепипеда пересекаются в одной точке О и делятся этой точкой пополам. Таким образом, точка пересечения диагоналей параллелепипеда является его центром симметрии. [3, 21]

Быстрый поиск по Банку Рефератов: | Описание работы | Похожие работы

Теорема:

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Доказательство:

Это выплывает из пространственной теоремы Пифагора. Если – диагональ прямоугольного параллелепипеда , то – ее проекции на три попарно перпендикулярные прямые (рис. 6). Следовательно, . [2, 116]

Замечание: в прямоугольном параллелепипеде все диагонали равны.

Наши рекомендации