Вопрос об отношении к науке – кардинальный вопрос философии науки, который привел к дилемме «сциентизм – антисциентизм». 2 страница
Механистическая картина мира, методы научного объяснения природы, разработанные Ньютоном, дали мощный толчок развитию других наук, появлению новых областей знания – химии, биологии.
Огромное влияние механистическая картина мира оказала на философию – она способствовала утверждению материалистического взгляда на мир среди философов. К примеру, Т.Гоббс (1588-1679) утверждал, что все сущее должно иметь физическую форму. Все есть движущаяся материя – даже разум он представил как некий механизм, а мысли – движущейся в мозге материей.
Вплоть до XIX века в естествознании царствовала механистическая картина мира, а познание опиралось на методологические принципы – механицизм и редукционизм.
Однако по мере развития науки, различных ее областей (биологии, химии, геологии, самой физики) становился очевидностью факт, что механистическая картина мира не подходит для объяснения многих явлений. Так, исследуя электрическое и магнитное поля, Фарадей и Масквелл обнаружили факт, согласно которому материю можно было представить не только как вещество (в соответствии с механистическим ее толкованием), но и как электромагнитное поле. Электромагнитные процессы не могли быть сведены к механическим, и потому напрашивался вывод: не законы механики, а законы электродинамики являются основными в мироздании.
В биологии Ж.Б. Ламарк (1744-1829) сделал потрясающее открытие о постоянном изменении и усложнении всех живых организмов в природе (и самой природы), провозгласив принцип эволюции, что также противоречило положению механистической картины мира о неизменности частиц мироздания и предзаданности событий.
Наконец, открытие закона сохранения энергии в 40-х годы XIX столетия (Ю.Майер, Д.Джоуль, Э.Ленц) показало, что такие явления, как теплота, свет, электричество, магнетизм, также не изолированы друг от друга (как это представлялось раньше), а взаимодействуют, переходят при определенных условиях одно в другое и представляют собой не что иное, как разные формы движения в природе.
Так была подорвана механистическая картина мира с ее упрощенным представлением о движении как простом перемещении тел в пространстве и во времени, изолированных одно от другого, о единственно возможной форме движения – механической, о пространстве как «вместилище» вещества и о времени как неизменной константе, не зависящей от самих тел.
8. Революция в естествознании конца XIX – начала ХХ вв. и становление неклассической науки
Конец XIX- начало XX вв. ознаменованы целым каскадом научных открытий, которые завершили подрыв механистической концепции Ньютона: это открытие элементарной частицы – электрона, входящей в структуру атома (Дж. Томпсон), затем – положительно заряженной частицы – ядра внутри атома (Э.Резерфорд, 1914 г.), на основе чего была предложена планетарная модель атома: вокруг положительно заряженного ядра вращаются электроны. Резерфорд также предсказал существование и еще одной элементарной частицы внутри атома – протона (что позже и было открыто). Эти открытия перевернули существующие до сих пор представления об атоме как об элементарной, неделимой частице мироздания, его «кирпичике».
Следующий ощутимый удар по классическому естествознанию нанесла теория относительности А.Эйнштейна (1916 г.), которая показала, что пространство и время не являются абсолютными, они неразрывно связаны с материей (являются ее атрибутивными свойствами), а также связаны движением между собой. Очень четко суть этого открытия охарактеризовал сам Эйнштейн в работе «Физика и реальность», где он говорит о том, что если раньше (имеется в виду время господства классической механики Ньютона) считали, что в случае исчезновения из Вселенной всей материи пространство и время сохранились бы, то теория относительности обнаружила, что вместе с материей исчезли бы и пространство, и время.
Поистине революционным было открытие М.Планком (1900 г.) квантов – дискретных частиц или порций, лежащих в основе процесса электромагнитного излучения. Теория квантов противоречила существующей волновой и электромагнитной природе света, разработанной Д.Масквеллом, которая в свое время (конец XIX в.) привела к необходимости смены механистической картины мира на электродинамическую. Возникло противоречие в представлении о материи – или она непрерывна (волновая теория), или состоит из дискретных частиц (корпускул). Это противоречие разрешилось в 1924 г., когда физик Луи де Бройль высказал гипотезу о том, что частицам материи присущи и свойства волны (непрерывность), и свойства дискретности (квантовость). Впоследствии эксперименты подтвердили эту гипотезу, и был открыт важнейший закон природы о том, что все материальные объекты обладают и корпускулярными, и волновыми свойствами.В отличие от предсказуемого мира ньютоновской физики квантовая теория указала на невозможность, непредсказуемость поведения отдельной частицы. Этот вопрос затрагивает основы бытия: невозможно предсказать с помощью традиционной механики поведение отдельных вещей или личностей, можно определить лишь тенденцию – все дело случая!
Вместе с тем, значение указанных открытий заключается и в том, что стал очевидным факт: картина объективного мира определяется не только свойствами самого этого мира, но и характеристиками субъекта познания, его активностью, личной позицией, принадлежностью к той или иной культуре, зависит от взаимодействия познающего субъекта с приборами, от методов наблюдений и пр.
Воспроизводя объект, субъект так или иначе выражает и себя, свой интерес, свои оценки. При построении любой теории невозможно отвлечься от человека, его вмешательства и в природу, и, тем более, в общественные процессы. Таким образом, мир не существует как нечто безличное, сугубо объективное, он раскрывается благодаря активности субъекта – наблюдателя, зависит от его точки зрения при описании и объяснении законов, общих для всех наблюдений.
Перемены, привнесенные наукой XIX-XX вв., повлекли за собой целую серию технических изобретений. Если в начале XIX века на железных дорогах, фабриках, заводах использовался пар, уже в 30-е годы XIX века ему на смену приходит электричество. Далее следовали электрический телеграф, телефон, автомобили, железобетонные конструкции – одним словом, наука тесно внедряется в производство, смыкается с техникой, что привело к разительным переменам в образе жизни развитых капиталистических стран.
Внедрение техники в производство, усиление товарно-денежных отношений в странах Западной Европы поставили перед необходимостью выяснить причины, факторы, способствующие накоплению богатства нации. Так возникла классическая политэкономия (XVIII в., Адам Смит), в основе которой лежит идея о том, что источником богатства является труд, а регулятором экономических отношений – законы рынка. Позже, в 40-е гг. XIX в., немецкий философ К.Маркс подверг критике классическую политэкономию и сумел вскрыть механизм капиталистической эксплуатации, создав теорию прибавочной стоимости. И концепцию А.Смита, и учение К.Маркса можно рассматривать как первые научные подходы к изучению законов общественной жизни.
Научным подходом к изучению общества становится социология, основателем которой считают О.Конта (1798-1857). В отличие от предшествующих подходов к изучению общественных явлений (поиск причин) О.Конт предлагает к их изучению применить методы научного исследования – наблюдение и систематическое описание.
Подведем итоги:
К концу XIX столетия завершился период формирования классического типа научного знания, в арсенале которого – значительные достижения. В физике – это классическая механика Ньютона, позднее – термодинамика, теория электричества и магнетизма; в химии была открыта периодическая система элементов, заложены начала органической химии; в математике – развитие аналитической геометрии и математического анализа; в биологии – эволюционная теория, теория клеточного строения организмов, открытие рентгеновых лучей и т.д. К концу XIX века сложилось ощущение, что наука нашла ответы почти на все вопросы о мире, осталось разгадать немногое. И вдруг – новый прорыв – открытие структуры атома, повлекшее за собой «кризис в физике», позднее распространившийся на другие отрасли знания.
Не раскрывая в деталях сущность обозначенных отличительных признаков постклассической науки (в той или иной мере это было сделано по ходу раскрытия этапов развития науки), отметим, что происшедшие в ней изменения оказали огромное влияние на мир в целом и на отношение к нему человека. Это проявляется, во-первых, в том, что в современной научно-технической эпохе не существует неких единых канонов, общепринятых стандартов в восприятии мира, его объяснении и понимании – эта открытость выражается в плюрализме идей, концепций, ценностей. Другой (второй) особенностью современной ситуации являются ускоренный ритм событий, их смысловая плотность и конфликтность. В-третьих, сложилась парадоксальная ситуация: с одной стороны, утеряна вера в разумное устройство мироздания, а с другой – прослеживается тенденция рационализации, технизации всех сторон жизни как общества, так и отдельных индивидов. Итогом этих процессов являются радикальное изменение стиля жизни, предпочтительное отношение ко всему быстротечному, меняющемуся в отличие от устойчивого, традиционного, консервативного.
9.Особенности современного этапа развития науки. Синергетическая парадигма как стратегия новых научных поисков.
С точки зрения организации и формы в современной науке происходят процессы дифференциации и интеграции.
Дифференциация научного знания связана с возникновением науки в XVII-XVIII вв., появлением новых научных дисциплин со своим предметом и специфическими средствами познания (как известно, в античной философии не сложилось разграничения между отдельными областями исследования, не существовало отдельных научных дисциплин, за исключением математики и астрономии).
Первыми, оформившимися в научные дисциплины, были небесная и земная механика, наряду с математикой и астрономией. В дальнейшем процесс дифференциации научного знания углублялся и расширялся с появлением новых научных дисциплин, таких как химия, геология, биология и др. Сформировались образ науки как дисциплинарно организованного знания и дисциплинарный подход, ориентированный на изучение специфических, частных закономерностей и явлений.
Дифференциация наук в огромной степени способствовала (и способствует) возрастанию глубины, точности и гибкости научного знания, однако уже к концу XIX – началу XX вв. в связи с новыми открытиями в области физики, астрономии, химии, биологии, медицины становится очевидным факт, согласно которому дисциплинарный подход носит ограниченный характер и не способен объяснить наиболее общие закономерности, управляющие явлениями, не способен открыть фундаментальные законы, раскрывающие взаимосвязи между разными группами и классами явлений или целых областей природы. Кроме того, процесс дифференциации все в большей степени «загонял» ученых в узкие рамки отдельных областей явлений и процессов, ослабляя взаимопонимание и сотрудничество между ними, без чего невозможна наука.
В связи с обозначенными моментами назрела другая, противоположная дифференциации, тенденция – интеграция, позволяющая изучать сразу многие процессы и явления с единой, общей точки зрения. Кроме того, в процессе интеграции становится возможным использование методов одной науки в другой, в результате чего возникли такие междисциплинарные науки, как астрофизика, биофизика, биохимия, геохимия и т.д. В настоящее время процесс интеграции в науке усиливается, появляются все новые синтетические науки, позволяющие рассматривать объекты и явления в их глубинных взаимосвязях и, одновременно, с точки зрения общих закономерностей и тенденций.
Процесс дифференциации и интеграции в современной науке дополняется системнымподходом, при котором предметы и явления окружающего нас мира рассматриваются как части и элементы единого целого, взаимодействующие друг с другом и приводящие к появлению новых свойств системы, отсутствующих у отдельных ее элементов.
Системный подход, возникший сравнительно недавно (50-е гг. XX в.), распространился не только на естественные, но и на социально-гуманитарные науки. Главное достоинство системного принципа заключается в том, что мир в нем предстает как многообразие систем разнообразного конкретного содержания, объединенных в рамки единого целого – Вселенной.
Таким образом, современная наука опирается на такие подходы и методы исследовательской деятельности, как интегративный, междисциплинарный, комплексный, системный способы. К их числу относится и эволюционный подход, который в современной науке приобрел статусглобального эволюционизма. О содержательном аспекте этих методов речь пойдет дальше.
В числе междисциплинарных исследовательских направлений сегодня важное место занимает синергетика. Термин «синергетика» ввел в научный обиход немецкий физик Г.Хакен. Он поясняет, что назвал так новую дисциплину потому, что хотел указать на то, что для исследования процессов самоорганизации в сложных системах необходимо кооперирование многих дисциплин.
Что такое сложные системы? К ним относятся, к примеру, системы живой природы, некоторые социальные и гуманитарные системы. Их отличительными особенностями являются динамичность и перестройка структурных и организационных форм. Поэтому их определяют как самоорганизующиеся системы.
Самоорганизация предполагает изменение прежней организации, порядка или структуры и появление нового на основе взаимодействия элементов системы с внешней средой. Главный вопрос, на который призвана ответить синергетика, заключается в следующем: как, каким образом возникают устойчивость и порядок в таких системах, если по своей сути они неустойчивы, динамичны?
Для этого необходимы следующие условия:
1.Система должна быть открытой по отношению к окружающей ее среде, с которой каждая частица системы взаимодействует, получая от нее приток энергии (или вещества).
2.Система включает в себя неустойчивые моменты, случайные отклонения, флуктуации, которые, при условии открытости системы, не подавляются ею, а накапливаются, возрастают и со временем приводят систему к «расшатыванию», к распаду прежнего и возникновению нового порядка. Бельгийский ученый (русский по происхождению) И.Пригожин характеризует этот принцип как принцип образования порядка через флуктуации. Флуктуации имеют случайный характер, из чего следует, что появление нового в мире всегда связано с действием случайных факторов.
Синергетическая концепция нашла широкое применение не только в естественных и гуманитарных науках, она позволяет дать ответы на глобальные общенаучные и мировоззренческие вопросы. Состоит ли окружающий нас мир из разнообразных по содержанию и форме самоорганизующихся систем? Как возникла живая природа – как результат стихийно сложившихся условий, обстоятельств и факторов, как об этом говорит классическая биология, или она – результат процесса самоорганизации, начавшегося в неживой природе? Как организация и самоорганизация проявляют себя в обществе?
Главное отличие синергетической парадигмы от традиционной стратегии изучения сложных систем заключается в следующем. В традиционном подходе объяснение процессов, происходящих в сложных системах, осуществлялось на основе редукции – сведения их к поведению простых элементов в микромире (мире ненаблюдаемых объектов – атомов, микрочастиц и пр.). Синергетика, напротив, стремится установить связь и взаимодействие между микро- и макропроцессами (наблюдаемыми), не рассматривая свойства ненаблюдаемых объектов. Изменения же, происходящие в макромире, синергетика объясняет как результат взаимодействия огромного числа элементов и частиц системы на ненаблюдаемом уровне. Основная идея синергетики: сложные системы изменяются в результате изменений, происходящих на микроуровне, они недоступны непосредственному наблюдению, но доступен наблюдению их совокупный результат, который описывается управляющими параметрамисистемы.
В традиционном смысле понятие «сложность» понималось как многоуровневость, иерархичность, в синергетической парадигме – как динамичность, как то, что имеет потенциал самоорганизации. В традиционной доминанте «система» понималась как «равновесность», «устойчивость», в синергетической – как неустойчивость состояний, частей системы. «Случайное» в синергетической парадигме определяется как общее правило (а не как исключение), а «неравновесность» - как условие и источник порядка (что совпадает с интуитивными прозрениями древних мудрецов: «Космос из Хаоса», «случайное» - причина возникновения мира (Аристотель, Л.Кар, Эпикур).
Синергетическая парадигма позволила разрешить главное противоречие, существующее между неживой и живой природой, между микро- и макроуровнем, основанное на противопоставлении классической термодинамики и эволюционного учения Ч.Дарвина. Она доказала (экспериментально и теоретически), что при наличии определенных условий самоорганизация может происходить уже в простейших физико-химических и других системах неорганической природы.
Синергетическая парадигма показывает, что не только причина вызывает и порождает действие (как это утверждалось в традиционном понимании линейной причинности), но и действие может оказывать влияние на породившую его причину (или причины). Поведение компонентов системы подчиняется и управляется параметрами порядка, в то же время сами параметры порядка возникают в результате взаимодействия компонентов системы. А это указывает на цикличность причинности, учитывающую факт обратного влияния действия на породившую его причину.
Какое значение имеют эти открытия для практической жизни и деятельности человека и человечества?
1.Зная, как устроено сложное в мире, по каким законам оно функционирует, становится возможным вписывать свои действия в универсальные цепи самоорганизации.
2.Синергетическая парадигма позволяет рассматривать окружающий человека мир не как оппозицию «субъект – мир», а как сосуществование человека вместе с миром и внутри, поскольку сам человек – самоорганизующаяся система. Если человек не внеположен миру, а находится внутри него, он обязан уважительно и с осторожностью к нему относиться, поскольку мир непредсказуем и человек зачастую бессилен прогнозировать и контролировать его. Человек в этом мире вовлечен в иерархию ситуаций, а потому он всегда живет в ситуации выбора вариантов поведения, ответственен за свои поступки.
10. Глобальный эволюционализм: синтез эволюционного и системного подходов.
Идеи эволюции возникли в науке приблизительно в XVIII-XIX вв. (Это эволюционная теория Ч.Дарвина в биологии и др). Данные идеи на сегодняшний день приобрели характер глобальной эволюции Вселенной. Во многом этому способствовал и системный подход, и принципы самоорганизации открытых систем.
Исследованием космической эволюции занимается новая наука – космология, представляющая синтез астрономии, физики, геометрии и др. Основные этапы ее становления следующие. Первоначально она возникла на базе теории относительности (поэтому ее называли релятивистской), и основное внимание в ней уделялось геометрии Вселенной (кривизне четырехмерного пространства).
В конце XIX – начале XX вв. усилиями таких ученых, как А.А. Фридман, Э.П. Хаббл, была теоретически обоснована идея расширяющейся Вселенной. В частности, Э.П. Хаббл обнаружил факт удаления галактик от наблюдателя на основе наблюдений за процессом смещения света, идущего от галактик, в сторону красного конца спектра (эффект красного смещения).
Приблизительно в то же время (20-30-х гг. XXв.), ученый Г.А. Гамов, отталкиваясь от идеи расширяющейся Вселенной, попытался раскрыть картину происхождения химических элементов Вселенной. Как результат была обоснована идея космической эволюции: начало космической эволюции - «большой взрыв»: первоначальная Вселенная находилась в сверхплотном и сверхгорячем состоянии, затем произошел взрыв, после чего она начала расширяться и постепенно охлаждаться. Что представляла собой Вселенная до взрыва – неизвестно, можно лишь гипотетически предположить, что вещество Вселенной состояло из нейтронов, которые превращались в протоны, из них возникли сначала ядра атомов, а потом и атомы.
Уместно указать и на существование других гипотез образования Вселенной. Так, учеными была предложена гипотеза пульсирующей Вселенной, согласно которой после расширения должен следовать обратный процесс – сжатие. И совсем недавно, приблизительно четверть века назад, была выдвинута гипотеза, рассматривающая Вселенную как гигантскую флуктуацию вакуума. Ценность этой гипотезы заключается в том, что она помогает раскрыть состояние Вселенной до взрыва.
Идея космической эволюции Вселенной указывает на тот факт, что процесс ее образования проходит определенные этапы: от образования атомов и молекул (микроэволюция) до возникновения макротел и их систем, образования галактик (макроэволюция).
Кроме того, стало очевидным, что основой эволюции является нарушение симметрий между ядерными и гравитационными силами, благодаря чему стало возможным образование звезд, галактик и других космических объектов.
Разрушение симметрии привело не только к возникновению микро- и макрообъектов, оно способствовало дальнейшему формированию эволюционных процессов как на уровне микро-, так и макромира. Эволюция в микромире создала условия для развертывания эволюции в макромире. В свою очередь, это привело к биологической эволюции – эволюции сложноорганизованных живых систем.
Таким образом, сегодня мы можем говорить о глобальном, или универсальном, эволюционизме, что позволяет рассматривать Вселенную как единый универсальный процесс эволюции взаимосвязанных систем различного уровня. Само понятие эволюции также претерпело изменения по сравнению с XIX веком: универсальная эволюция понимается сегодня как синтез системного и эволюционного подходов, что позволяет анализировать не только эволюцию отдельных систем (как в биологии), а исследовать взаимосвязь и взаимодействие множества развивающихся систем – от простейших, физических, состоящих из элементарных частиц, до более сложных как по уровню организации, так и по типу взаимодействия между их элементами. На основе такого (системного) подхода научная картина мира сегодня предстает как целостный процесс перехода от микроэволюции, связанный с образованием сложных микрообъектов, к макроэволюции, а от нее – к биологической эволюции. Этими процессами и объясняется все многообразие вещей и явлений, происходящих в окружающем нас мире.
Системный подход к глобальной эволюции дополняется синергетическим принципом, объясняющим переход от одних систем и структур к другим посредством процесса самоорганизации. Синергетика разрушила представление о стационарном характере Вселенной, позволила идею эволюции в биологии перенести на объекты физического мира, устранив тем самым противоречие между классической физикой и эволюционной теорией в биологии. Основные принципы синергетики как науки о взаимодействии и самоорганизации сложных систем позволяют объяснить возникновение порядка из беспорядка, понять закономерность как результат взаимодействия множества случайностей и тем самым проливают свет на многие процессы, происходящие в сложных по своей природе живых и социальных системах и процессах.
11. Проблемы экологии и биосферы в современной науке
В классической биологической эволюции акцент делался на влияние окружающей среды на все живое, а в новой парадигме внимание ученых привлек обратный процесс – влияния и воздействия живых организмов на физические, химические и геологические факторы внешней среды. Многочисленные наблюдения и исследования ученых привели к открытию обратной связи между живой и неживой природой, в результате которой живое вещество меняет в значительной степени лик природы. В исследование этих проблем значительный вклад внесли представители русского космизма – В.И. Вернадский, Н.А. Умов, Н.Г. Холодный, К.Э. Циолковский, А.Л. Чижевский.
Понятие «живое вещество» было введено в научный язык В.И. Вернадским. Он определяет его как совокупность живых организмов, включая человечество. Человеческая деятельность оказывает активное влияние на все остальные живые существа, а также на геохимические процессы планеты Земля. Живое вещество, хотя и составляет незначительную часть биосферы, является ее определяющим компонентом. Оно, по определению В.И. Вернадского, представляет «огромную геологическую силу», определяющую всю систему биосферы. В подтверждение этой мысли он указывает на непрерывный рост центральной нервной системы и ее значение в биосфере, а также на организованность самой биосферы. Этот непрерывный процесс эволюции сопровождается появлением новых организмов, что, в свою очередь, оказывает влияние и на саму биосферу, и на ее процессы (изменения почвы, надземных и подземных вод и т.д.).
Другим центральным понятием учения В.И. Вернадского является понятие ноосферы. Ноосфера – это результат сознательной деятельности человечества по преобразованию природы, которая становится важнейшим фактором преобразования всей планеты. «Ноосфера есть новое геологическое явление на нашей планете. В ней впервые человек становится крупнейшей геологической силой…»
Как человеческая деятельность влияет на процессы в биосфере, как она способствует ее эволюции?
Исторически переход от биосферы к ноосфере начал осуществляться еще в те времена, когда человечество освоило земледелие и скотоводство. Это привело к расширению посевных площадей, изобретению орудий земледелия и возделывания с их помощью земель. Изобретение орудий производства и охоты, приручение диких животных, создание новых культурных растений привели к тому, что человек научился изменять окружающий его мир, создавать новую живую природу. Человек сумел новым путем, отличающимся от животных, победить голод, обеспечив тем самым возможность неограниченного размножения.
Таким образом, человечество как часть биосферы своей разумной деятельностью оказывало всевозрастающее влияние на происходящие в биосфере процессы. На сегодняшний день в связи с огромными техногенными нагрузками на биосферу остро встает вопрос о сохранении окружающей среды, природы от воздействия на нее человека.
Возрастающее воздействие человека на природу в современном мире приобрело угрожающие масштабы. Загрязнение атмосферы, рек и озер, кислотные дожди, увеличивающиеся отходы производства, использование радиоактивных веществ заставили человечество задуматься о своем будущем. Соответственно, эта проблема встала во весь рост перед ученым сообществом. Так возникла новая научная дисциплина – экология, предметом которой являются процессы взаимодействия биосферы и общества, взаимосвязи живых организмов с окружающей их средой.
Ученым сообществом предпринимаются меры по разрешению экологического кризиса. Сегодня можно говорить о сформировавшихся концепциях экологии, среди которых представляет интерес концепция коэволюции. Ее суть сводится к следующим положениям: чтобы обеспечить себе будущее, человечество должно воздействовать и изменять не только биосферу, но и измениться само, приспосабливаясь к объективным требованиям природы. Коэволюционный переход системы «человек - биосфера» к состоянию динамически устойчивой целостности, симбиоза и будет означать превращение биосферы в ноосферу. Для того чтобы это могло свершиться, человечество должно следовать двум важным требованиям – экологическому и нравственному императиву. Первый означает необходимость запрета на те виды человеческой деятельности (в частности, производственной), которые представляют угрозу существованию человечества, или установления жесткого контроля над ними.
Сформировался новый раздел этики – экологическая этика. Главные содержательные моменты этой этики сводятся к следующему положению: необходимо установить гармоничные отношения между обществом и природой, отказаться от антропоцентрического взгляда на мир, согласно которому человек объявляется центром мироздания и властелином природы. Не покорять ее, а адаптироваться, приспосабливаться. Эти идеи наиболее активно выражают в своих выступлениях западноевропейские философы Э.Ласло, О.Леопольд. По мнению последнего, экологическая этика должна способствовать изменению отношения людей ко всему живому сообществу планеты Земля.
Другие авторы (Р.Артфильд, Л.Уойат) утверждают, что целью экологической этики должно стать воспитание у людей чувства ответственности за сохранение природы. С этой целью они предлагают обратиться к ценностям религии, а также призывают к активности интеллектуальные группы, сообщества, которые, осознав кризисную ситуацию, через проповеди, дискуссии, обращения к политикам и народным массам должны оказывать влияние на мировосприятие людей, содействовать их сплочению в общечеловеческом движении за спасение планеты Земля.