Философские концепции математики и проблема обоснования математики

Нелегко ответить на вопрос о том, что привело греков к их открытию. Первые попытки осмыслить окружающий человека мир были сделаны в Ионии, греческих поселениях в Малой Азии, и многие историки пытались объяснить это сложившейся в Ионии общественно-политической обстановкой. Так, в Ионии была более свободная, чем в европейской Греции, политическая структура, что повлекло за собой определенное пренебрежение к традиционным религиозным верованиям. Однако наше знание греческой истории по VI в. до н. э., носит настолько фрагментарный характер, что невозможно дать сколько-нибудь исчерпывающее объяснение отмеченному феномену.

Греческие мыслители стали по-новому относиться к природе. Их отношение было рациональным, критическим и нерелигиозным. Греки отказались от мифов, равно как и от веры в богов, по своей прихоти правящих человеком и всем миром. Постепенно греческие мыслители создали учение об упорядоченной природе, бесперебойно функционирующей по единому плану. Все явления, доступные нашим органам чувств, - от движения планет до трепетания листьев на дереве - грекам удалось уложить в четкую, согласованную в деталях, понятную картину. Короче говоря, оказалось, что природа устроена рационально, и единый план, лежащий в ее основе, хотя и не поддается воздействию со стороны человека, вполне постижим.

Первые попытки дать рациональное объяснение природы и устройства Вселенной предприняли ионийские философы в VI в. до н. э. Каждый из знаменитых философов этой эпохи: Фалес, Анаксимандр, Анаксимен, Гераклит и Анаксагор - пытался объяснить устройство Вселенной, принимая за основу какую-нибудь одну субстанцию. Фалес считал, например, что все состоит из воды, находящейся в газообразном, жидком или твердом состоянии. Объяснение многих явлений Фалес связывал с водой. Выбор его не столь неразумен, если учесть, что облака, туман, роса, дождь и град - различные состояния воды и что без воды нет жизни: она питает посевы и является основой органической жизни. Даже тело человека, как известно, на 90% состоит из воды.

Платон утверждал, что реальность и рациональность физического мира могут быть постигнуты только с помощью математики идеального мира. То, что идеальный мир устроен на математических началах, не вызывало сомнений. Плутарх приводит знаменитое изречение Платона: «Бог всегда является геометром». В диалоге «Государство» Платон говорит о том, что «знание, к которому стремятся геометры, есть знание вечного, а не того, что тленно и преходяще». Математические законы платоники считали не только сущностью реальности, но и вечными и неизменными. Числовые отношения также были частью реальности, а скоплениям вещей отводилась роль подобия чисел. Если у ранних пифагорейцев числа были имманентны (внутренне присущи) вещам, то у Платона числа стали трансцендентны вещам.

Среди тех, кто отстаивал наличие у математики эмпирических оснований и критериев, видное место занимал Дж. С. Милль (1806-1873). Он допускал, что математика обладает большей общностью, чем некоторые физические науки, но видел «оправдание» математики лишь в том, что ее утверждения проверены и подтверждены шире и основательнее, чем утверждения физических наук. Следовательно, заключал Милль, глубоко заблуждаются те, кто считает, что математические теоремы качественно отличаются от подтвержденных гипотез и теорий других наук. Причина подобного заблуждения заключается в том, что эти люди считают математические теоремы вполне достоверными, а физические теории - весьма вероятными или всего лишь подкрепляемыми опытом.

Милль обосновал свои взгляды философскими соображениями задолго до того, как возникла современная дискуссия по основаниям математики. Тем больше оснований быть прагматиками у тех, кто работал и работает в основаниях математики. Как заметил Гильберт, «и познаешь их по плодам их». Еще одно высказывание Гильберта по этому поводу - «Успех здесь [в математике] необходим; он является высшей инстанцией, перед которой все преклоняются» - относится к 1925 г.

Даже Рассел, провозгласивший в 1901 г., что здание математической истины - логической и одновременно физической - останется незыблемым навеки, в работе 1914 г. был вынужден признать, что «наше знание геометрии физического мира носит синтетический, а не априорный характер». Иначе говоря, геометрия не следует из одной лишь логики. Во втором издании «Оснований математики» (1926) Рассел пошел на еще большие уступки. По его словам, в правильность логики и математики так же, как и в правильность уравнений Максвелла, мы «верим потому, что из наблюдений убеждаемся в правильности некоторых логических следствий, к которым они приводят».

Другое дело, что роль математики в современной науке отнюдь не сводится к почетным обязанностям главного инструмента познания. Итак, на любой вопрос о том, работает ли математика, мы можем с уверенностью дать положительный ответ, но гораздо труднее ответить на вопрос, почему она столь эффективна. Во времена античности математики считали, что знают верные приметы того, где следует искать «золото» (математика была сводом истин о физическом мире, и заложенные в ее основу логические принципы также были абсолютными истинами), и поэтому копали энергично, с размахом и настойчиво.

Итак, перед человеком стоит загадка двоякого рода. Почему математика безотказно срабатывает даже там, где заключение, требующее сотен дедуктивных выводов, оказывается столь же применимым, как и исходные аксиомы, хотя физические явления описываются не на математическом, а на физическом языке? И почему математика эффективна там, где мы располагаем лишь непроверенными гипотезами о сущности физических явлений и где при описании этих явлений вынуждены почти целиком полагаться на одну математику? От этих вопросов нельзя бездумно отмахнуться: слишком уж многое в нашей науке и технике зависит от математики. Может быть, эта наука, хотя ее и используют как непобедимое знамя истины, одерживает свои победы с помощью какой-то таинственной внутренней силы и действительно наделена какими-то волшебными чарами?

Эйнштейн поясняет, что аксиоматизация математики сделала это различие очевидным. Хотя Эйнштейн понимал, что аксиомы математики и принципы логики выведены из опыта, его интересовало, почему иная и сложная цепь чисто логических рассуждений, которые не зависят от опыта и используют понятия, данные человеческим разумом без всякой апелляции к эксперименту и природным феноменам, может приводить к выводам, находящим столь широкие применения.

Современное объяснение необычайной эффективности математики восходит к И. Канту, который утверждал, что мы не знаем и не можем знать природы. Мы располагаем лишь чувственными восприятиями. Наш разум, обладая врожденными интуитивными представлениями о пространстве и времени, организует чувственные восприятия в соответствии с тем, что диктуют эти врожденные представления. Так, наши пространственные восприятия мы организуем в соответствии с законами эвклидовой геометрии, потому что этого требует наш разум. Упорядоченные разумом, пространственные восприятия продолжают подчиняться законам евклидовой геометрии. Разумеется, Кант заблуждался, считая эвклидову геометрию единственно возможной, но главное в его учении заключалось в другом. Он полагал, что человеческий разум определяет, как ведет себя природа.

Г. Вейль был уверен в том, что математика отражает порядок, существующий в природе. В одном из выступлений Вейль сказал: «В природе существует внутренне присущая ей скрытая гармония, отражающаяся в наших умах в виде простых математических законов. Именно этим объясняется, почему природные явления удается предсказывать с помощью комбинации наблюдений и математического анализа. Сверх всяких ожиданий, убеждение (я бы лучше сказал, мечтание) в существовании гармонии в природе находит все новые и новые подтверждения в истории физики».

Согласно статистическим представлениям, математические законы природы описывают в лучшем случае наиболее вероятный режим протекания того или иного явления; однако они не исключают полностью, например, возможности того, что Земля может неожиданно сойти со своей орбиты и отправиться странствовать в глубины космического пространства. Статистический подход как бы оставляет за природой возможность «передумать» и не делать того, что наиболее вероятно. Некоторые философы, занимающиеся проблемами естествознания, пришли к заключению, что необъяснимая эффективность математики остается необъяснимой.

Хотя математика - творение чисто человеческое, тот путь, который она открывает нам к различным явлениям природы, приводит к результатам, превосходящим самые смелые ожидания. Как ни парадоксально, но именно абстракции, столь далекие от реальности, позволяют достичь столь многого. Возможно, что искусственное математическое описание не более чем сказка для взрослых, но сказка с моралью, так как человеческий разум обладает огромной силой, даже если эту силу не так-то легко объяснить.

За успехи математики заплачено определенной ценой, и эта цена - количественный подход к миру. Мы рассматриваем его о точки зрения меры, веса, продолжительности и тому подобных понятий. Такое описание дается в богатом и разнообразном опыте как более полное представление о мире.

Все свершения математики - это свершения человеческого разума. Показав, на что способен человек, математика вселила в людей смелость и уверенность, позволившие им вплотную взяться за разгадку ранее, казалось бы, неприступных тайн космоса, лечение страшных болезней, количественный анализ проблем, относящихся к экономике и устройству человеческого общества, что позволяет надеяться на дальнейший прогресс человечества.

Математика таит в себе ценности не меньшие, чем любое другое творение человеческого духа. Ценности легко воспринимаются, им не всегда воздают должное, но, к счастью, ими пользуются. Познать их труднее, скажем, чем ценности музыки, однако того, кто сумеет преодолеть нелегкий путь познания, ждет богатое вознаграждение. В этих ценностях сосредоточено все, что отличает лучшие творения человеческого духа. Ценности, воплощенные в математике, поистине неисчерпаемы. Единственный вопрос, который может здесь возникнуть, - это вопрос о степени их важности.

Математические истины не следует искать в божественном уме или в структурах Вселенной: математика представляет такой же вид поведения, как и языки, музыкальные системы и уголовные кодексы. «Местом математической реальности является культурная традиция, т.е. континуум символического поведения, - отмечает Л. Уайт. Вместе с тем эта теория проясняет и феномен новаций и прогресса в математике. Идеи взаимодействуют друг с другом в нервных системах людей и таким образом образуют новые синтезы. Если обладатели этих нервных систем отдают себе отчет в том, что произошло, то называют это изобретением или «творением», пользуясь термином Пуанкаре. Если же они не понимают случившегося, то они называют его «открытием» и полагают, будто отыскали нечто во внешнем мире. Это означает, что математические понятия независимы от сознания индивида, однако целиком находятся в пределах культуры.

Наши рекомендации