Понятие о единстве материи с точки зрения современной физики

Введение

Исходной категорией в философском осмыслении мира является категория «бытия». В этой категории фиксируется убеждение человека в существовании окружающего мира и самого человека с его сознанием. Отдельные вещи, процессы, явления возникают и исчезают, а мир в целом существует и сохраняется. Констатация бытия является исходной предпосылкой дальнейших рассуждений о мире.

Категория бытия, выступая предельно общей абстракцией, объединяет по признаку существования самые различные явления, предметы и процессы: природные объекты, их свойства, связи и отношения, человеческие коллективы и отдельных людей, социальные институты, состояния человеческого сознания и т.д. Все существующее – это и есть мир, к которому мы принадлежим.

Из всех многообразных форм бытия в центре внимания философов всегда находились две: материальная и идеальная. И тому есть простое объяснение. Для философов самый интересный предмет исследования – это человек, строй и смысл его жизни. А вопрос «что такое человек?» подразумевает выделение специфики человеческого существования, то есть таких качеств, которые отличают человека от всего остального мира. И первое, самоочевидное такое качество – это, конечно, наш разум, сознание. Здесь и лежат истоки знаменитой философской антитезы материального и идеального. Философы показывают специфику человеческого бытия через противопоставление идеального (разума, сознания) материальному (всему остальному). Поэтому категории «материя» и «сознание» неизбежно выдвигаются на первый план, образуют своеобразную ось философских размышлений независимо от того, признается ли этот факт открыто или нет.

Выделяя главные сферы бытия (природу, общество, сознание), мы неявно полагаем, что многообразие явлений, событий, процессов, включенных в эти сферы, объединено некоторой общей основой. Вместе с тем возникает вопрос: имеется ли нечто объединяющее сами эти сферы, можно ли говорить о единстве всего бесконечного многообразия мира? Идея такого единства приводит к представлению об общей основе всего существующего, для обозначения которой в философии была выработана категория «материя».

Конкретизация понятия «бытие» осуществляется, в первую очередь, в понятии «материя». Ясно, что проблемы материи, в том числе и ее понятие, разрабатывались прежде всего философами-материалистами от древних до современных. Наиболее полная и глубокая разработка данных проблем содержится в трудах современных материалистов. В материалистической философии «материя» выступает как наиболее общая, фундаментальная категория, в которой фиксируется материальное единство мира; разнообразные формы бытия рассматриваются как порожденные материей в ходе ее движения и развития.

Понятие «материи»

Понятие «материя», по-видимому, родилось из стремления выявить изначальное единство всего существующего на свете, свести все многообразие вещей и явлений к некой общей, исходной основе, то есть у всех без исключения предметов и явлений есть какая-то единая основа, некий первичный «материал», из чего все «состоит».

На роль такой первоосновы мира у античных греков последовательно претендовали вода (Фалес), воздух (Анаксимен), огонь (Гераклит), а то и все эти стихии разом (Эмпедокл). Не менее значимы были попытки приписать искомому первоначалу идеальный характер («эйдосы» у Платона, «нус», то есть ум, у Анаксагора). Одной из самых удачных концепций в этом плане стала атомистическая гипотеза Демокрита, основная идея которой входит и в современное мировоззрение.

Чуть позже для обозначения предполагаемой изначальной общности всего существующего стали применять понятие «субстанция» (от латинского substantia – то, что лежит в основе). Категория субстанции в философии обозначает исходное внутреннее единство разнообразных вещей, процессов и явлений, их умопостигаемую сущность. Конкретные вещи возникают и исчезают, их существование обусловлено другими вещами. Базовая же их основа – субстанция – несотворима и неуничтожима, она ничем другим, кроме самой себя, в принципе не может быть обусловлена.

Весьма важную попытку дать определение материи сделал французский материалист XVIII века Гольбах, который в работе "Система природы" писал, что "по отношению к нам материя вообще есть все то, что воздействует каким-нибудь образом на наши чувства".

Здесь мы видим стремление выделить то общее в различных формах материи, а именно: что они вызывают у нас ощущения. В этом определении Гольбах уже отвлекается от конкретных свойств предметов и дает представление о материи как абстракции. Вместе с тем определение Гольбаха было ограниченным. Оно не раскрывало до конца сущности всего того , что воздействует на наши органы чувств, оно не раскрывало специфики того, что не может воздействовать на наши чувства. Эта незавершенность предложенного Гольбахом определения материи создавала возможности как для материалистической, так и идеалистической ее трактовки.

К концу прошлого века естествознание, и в частности физика, достигло достаточно высокого уровня своего развития. Были открыты общие и, казалось, незыблемые принципы строения мира. Была открыта клетка, сформулирован закон сохранения и превращения энергии, установлен Дарвиным эволюционный путь развития живой природы, Менделеевым создана периодическая система элементов. Основой бытия всех людей, предметов признавались атомы - мельчайшие, с точки зрения того времени, неделимые частицы вещества. Понятие материи отождествлялось, таким образом, с понятием вещества, масса характеризовалась как мера количества вещества или мера количества материи. Материя рассматривалась вне связи с пространством и временем. Благодаря работам Фарадея, а затем Максвелла, были установлены законы движения электромагнитного поля и электромагнитная природа света. При этом распространение электромагнитных волн связывалось с механическими колебаниями гипотетической среды - эфира. Физики с удовлетворением отмечали: наконец-то, картина мира создана, окружающие нас явления укладываются в предначертанные им рамки.

Оценивая в целом представления классической физики XIX в. о строении и свойствах материи, отметим, что они страдали теми же недостатками, что и учения древних. Точка зрения на материю как на первичную, неизменную субстанцию и отождествление ее при этом с веществом содержали в себе предпосылки возможности критических ситуаций в физике. И это не замедлило сказаться.

На благополучном, казалось, фоне "стройной теории" вдруг последовала целая серия необъяснимых в рамках классической физики научных открытий. В 1896 г. были открыты рентгеновские лучи. В 1896 г. Беккерель случайно обнаружил радиоактивность урана, в этом же году супруги Кюри открывают радий. Томсоном в 1897 г. открыт электрон, а в 1901 г. Кауфманом показана изменчивость массы электрона при его движении в электромагнитном поле. Наш соотечественник Лебедев обнаруживает световое давление, тем самым окончательно утверждая материальность электромагнитного поля. В начале ХХ в. Планком, Лоренцом, Пуанкаре и др. закладываются основы квантовой механики, и, наконец, в 1905 г. Эйнштейном создается специальная теория относительности.

Многие физики того периода, мыслящие метафизически, не смогли понять сути этих открытий. Вера в незыблемость основных принципов классической физики привела их к скатыванию с материалистических позиций в сторону идеализма. Логика их рассуждений была такова. Атом - мельчайшая частица вещества. Атом обладает свойствами неделимости, непроницаемости, постоянства массы, нейтральности в отношении заряда. И вдруг оказывается, что атом распадается на какие-то частицы, которые по своим свойствам противоположны свойствам атома. Так, например, электрон имеет изменчивую массу, заряд и т.д. Это коренное отличие свойств электрона и атома привело к мысли, что электрон нематериален. А поскольку с понятием атома, вещества отождествлялось понятие материи, а атом исчезал, то отсюда следовал вывод: "материя исчезла". С другой стороны, изменчивость массы электрона, под которой понималось количество вещества, стала трактоваться как превращение материи в «ничто». Таким образом, рушился один из главнейших принципов материализма - принцип неуничтожимости и несотворимости материи.

Наиболее удачное определение материи было в ту пору сформулировано В.И. Лениным. Анализируя данную ситуацию, Ленин по-новому подошел к определению понятия материи:

«Материя есть философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них.»

Смысл данного определения сводится к тому, что материя есть объективная реальность, данная нам в ощущениях. Несмотря на кажущуюся простоту, это определение достаточно необычно. Своеобразие его заключается в том, что оно дается диалектически, то есть – через противоположность.

Понимание материи в этом случае не привязывается ни к какому конкретному ее виду или состоянию (веществу, полю, плазме, вакууму). И поэтому, сколько бы ни было впредь открыто таких видов материи, ее общее определение не должно быть поколеблено. Уровень общности ленинского определения материи – предельный.

Понятие о единстве материи с точки зрения современной физики

В основе современных научных представлений о строении материи лежит идея ее сложной системной организации. Любой объект материального мира может быть рассмотрен в качестве системы, то есть особой целостности, которая характеризуется наличием элементов и связей между ними.

Например, макротело можно рассматривать как определенную организацию молекул. Любая молекула тоже является системой, которая состоит из атомов и определенной связи между ними: ядра атомов, входящие в состав молекулы как одноименные (положительные) заряды, подчиняются силам электростатического отталкивания, но вокруг них образуются общие электронные оболочки, которые как бы стягивают эти ядра, не давая им разлететься в пространстве. Атом также представляет собой системное целое - состоит из ядра и электронных оболочек, расположенных на определенных расстояниях от ядра. Ядро каждого атома, в свою очередь, имеет внутреннюю структуру. В простейшем случае - у атома водорода - ядро состоит из одной частицы - протона. Ядра более сложных атомов образованы путем взаимодействия протонов и нейтронов, которые внутри ядра постоянно превращаются друг в друга и образуют особые целостности - нуклоны, частицы, которые часть времени пребывают в протонном, а часть - в нейтронном состоянии. Наконец, и протон, и нейтрон - сложные образования. В них можно выделить специфические элементы - кварки, которые взаимодействуют, обмениваясь другими частицами - глюонами (от лат. gluten - клей), как бы "склеивающими" кварки. Протоны, нейтроны и другие частицы, которые физика объединяет в группу адронов (тяжелых частиц), существуют благодаря кварк-глюонным взаимодействиям.

Изучая живую природу, мы также сталкиваемся с системной организацией материи. Сложными системами являются как клетка, так и построенные из клеток организмы; целостную систему представляет собой вся сфера жизни на Земле - биосфера, существующая благодаря взаимодействию своих частей: микроорганизмов, растительного, животного мира, человека с его преобразующей деятельностью. Биосферу можно рассматривать как целостный объект (как и атом, молекулу и т.д.), где есть определенные элементы и связи между ними.

Материальные системы всегда взаимодействуют с внешним окружением. Некоторые свойства, отношения и связи элементов в этом взаимодействии меняются, но основные связи могут сохраняться, и это является условием существования системы как целого. Сохраняющиеся связи выступают как инвариант, то есть устойчивые, не изменяющиеся при вариациях системы. Эти устойчивые связи и отношения между элементами системы образуют ее структуру. Иными словами, система - это элементы и их структура.

Любой объект материального мира уникален и нетождествен другому. Но при всей уникальности и непохожести объектов определенные их группы в своем строении обладают общими признаками. Например, существует очень большое разнообразие атомов, но все они устроены по одному типу - в атоме должно быть ядро и электронная оболочка. Огромное многообразие молекул - от простейшей молекулы водорода до сложных молекул белков - имеет общие структурные признаки: ядра атомов, образующих молекулу, стянуты общими электронными оболочками. Можно обнаружить общие признаки строения у различных макротел, у клеток, из которых построены живые организмы, и т.д. Наличие общих признаков организации позволяет объединить различные объекты в классы материальных систем. Эти классы часто называют уровнями организации материи или видами материи.

Согласно современным научным взглядам, глубинные структуры материального мира представлены объектами элементарного уровня. Это прежде всего элементарные частицы. За исключением электрона, исследования которого начались еще в XIX веке, все остальные были обнаружены в XX столетии. Их свойства оказались весьма необычными, резко отличающимися от свойств макротел, с которыми мы сталкиваемся в повседневном опыте. Все элементарные частицы обладают одновременно и корпускулярными, и волновыми свойствами, а закономерности их движения, изучаемые квантовой физикой, отличаются от закономерностей движения макротел, описанных в классической физике.

До открытия элементарных частиц и их взаимодействий наука разграничивала два вида материи - вещество и поле.

Еще в конце XIX-начале XX века поле определяли как непрерывную материальную среду, а вещество - как прерывное, состоящее из дискретных частиц. Однако развитие квантовой физики выявило относительность разграничительных линий между веществом и полем. Только на макроуровне, когда можно не принимать во внимание квантовые свойства полей, их можно считать непрерывными средами. Но на микроуровне поля предстают как состоящие из квантов, которые можно рассматривать в качестве частиц, обладающих одновременно и корпускулярными, и волновыми характеристиками. Например, электромагнитное поле можно представить как систему фотонов, а гравитационное поле - как систему гравитонов - гипотетических частиц, которые предсказывает квантовая теория. В то же время и частицы вещества - электроны и позитроны, мезоны и другие - уже в целом ряде задач физика рассматривает как кванты соответствующих полей (электронно-позитронного, мезонного и т.п.).

Элементарные частицы участвуют в четырех типах взаимодействия - сильном, слабом, электромагнитном и гравитационном. Только два последних типа взаимодействий проявляют себя на любых сколь угодно больших расстояниях, и поэтому им подчинены процессы не только микромира, но и макротел, планет, звезд и галактик (макро- и мегамир). Что же касается сильных и слабых взаимодействий, то они характерны только для процессов микромира. Одним из самых удивительных открытий последней трети XX века было обнаружение того, что электромагнитные и слабые взаимодействия представляют собой стороны, различные проявления единой сущности - электрослабого взаимодействия.

Элементарные частицы можно классифицировать по типам взаимодействия. Адроны (тяжелые частицы - протоны, нейтроны, мезоны и др.) участвуют во всех взаимодействиях. Лептоны (от греч. leptos - легкий; например, электрон, нейтрино и др.) не участвуют в сильных взаимодействиях, а только в электрослабых и гравитационных. Гипотетические гравитоны выступают носителями только гравитационных сил. В сильных взаимодействиях многие адроны неразличимы, они как бы на одно лицо. Например, неотличимы друг от друга нуклоны - нейтроны и протоны, все П-мезоны (Пи-мезоны) выступают как одна частица. Но когда включаются электромагнитные силы, то нуклоны расщепляются на две составляющие, а П-мезоны на три (П°, П+, П-). Подобное расщепление позволяет рассматривать частицы как проявления некоторой глубинной структуры. Поиск таких структур составляет главную цель современной физики. На этом пути наука стремится обнаружить те глубинные свойства и состояния материи, которые в конечном счете определяют эволюцию Вселенной, особенности взаимодействия и развития ее объектов.

Первым большим успехом на этом пути было открытие кварковой структуры адронов. Кварки оказались весьма экзотическими объектами не только потому, что у них дробный электрический заряд (1/3 или 2/3 от заряда электрона, принимаемого за 1). Само взаимодействие кварков, осуществляемое благодаря обмену глюонами, таково, что увеличение расстояния между кварками внутри адронов приводит к резкому возрастанию связывающих их сил. Поэтому в отличие от ранее известных элементарных частиц (протонов, нейтронов, электронов и др.) кварки пока не обнаружены в свободном состоянии. Они оказываются как бы запертыми внутри адронов. Но в эксперименте их можно прозондировать: при столкновении частиц больших энергий внутри адронов обнаруживается несколько своеобразных центров, на которых происходит рассеяние частиц и которые физика отождествляет с кварками.

Кварки и лептоны выступают в качестве базисных объектов в системе элементарных частиц. Они являются главным строительным материалом для вещества нашего мира, поскольку ядра атомов существуют благодаря взаимодействию кварков, а формирование электронных оболочек вокруг ядра приводит к образованию атомов.

Современная физика пока еще не создала единой теории элементарных частиц, на пути к ней сделаны лишь первые, но существенные шаги. Выявление общих глубинных структур частиц, участвующих в сильных взаимодеиствиях, и установление единства слабого и электромагнитного взаимодействий стимулировали разработку идеи объединения сильных, электрослабых и гравитационных взаимодействий в рамках единой теории. Иными словами, речь уже идет об исследовании субэлементарного уровня организации материи, о выяснении единой природы всех элементарных частиц. По-видимому, именно в закономерностях этого уровня скрыты основные тайны нашей Вселенной, предопределившие особенности ее эволюции. Вообще для современной науки характерно, что чем глубже она проникает в микромир, тем больше возможностей открывается для понимания крупномасштабной структуры Вселенной. Последняя не является вечной и неизменной, а представляет собой результат развития материи, своеобразную реализацию тех потенциальных возможностей, которые были заложены в глубинах микромира.

Элементарный уровень организации материи включает наряду с элементарными частицами еще и такой необычный физический объект, как вакуум. Физический вакуум - не пустота, а особое состояние материи. В вакуум погружены все частицы и все физические тела. В нем постоянно происходят сложные процессы, связанные с непрерывным появлением и исчезновением так называемых "виртуальных частиц".

Виртуальные частицы - это своеобразные потенции соответствующих типов элементарных частиц, их "вакуумные корни", частицы, готовые к рождению, но не рождающиеся, возникающие и исчезающие в очень короткие промежутки времени. При определенных условиях они могут вырваться из вакуума, превращаясь в "нормальные" элементарные частицы, которые живут относительно независимо от породившей их среды и могут взаимодействовать с ней.

Первые шаги по пути исследования субэлементарного уровня материи привели к принципиально новым идеям о качественном многообразии вакуума. Выяснилось, что физический вакуум способен скачком перестраивать свою структуру. Такие переходы из одного состояния к другому, связанные с резким изменением характеристик системы, в физике называют фазовыми (известным их примером служат переходы воды в пар и лед). Физический вакуум тоже оказался способным к фазовым скачкам.

Эти новые идеи современной физики микромира послужили опорой необычных представлений о развитии нашей астрономической Вселенной, о ее возникновении путем взрыва, связанного с массовым рождением элементарных частиц в результате одного из фазовых переходов вакуума. Взаимодействие объектов субэлементарного уровня и возникающих на их основе элементарных частиц служит фундаментом для образования более сложных материальных систем. Из элементарных частиц строятся атомы, которые являются качественно специфическим видом материи.

Современная наука допускает возможность возникновения и сосуществования множества миров, подобных нашей Метагалактике и называемых внеметагалактаческими объектами.

Их сложные взаимоотношения образуют многоярусную Большую Вселенную - материальный мир с бесконечным разнообразием форм и видов материи. Причем не во всех этих мирах возможно то многообразие видов материи, которое возникает в истории нашей Метагалактики.

Заключение

Итак, подводя итог сказанному, необходимо особо подчеркнуть, что материя представляет собой объективную реальность, существующую вне и независимо от человеческого сознания и отражаемую им, что она находится в постоянном изменении, движении, переходит из одних относительно устойчивых материальных образований (качественных состояний) в другие, которые, будучи конечными, возникающими при определенных условиях и неизбежно исчезающими в следствии происходящих в них изменений, являются звеньями единого, бесконечного в пространстве и времени мирового процесса.

В данном реферате мы рассмотрели понятия материя, её основные свойства и строение. Ключевым разделом реферата является понятие о единстве материи с точки зрения современной физики – здесь мы рассмотрели современные теории и исследования.

Литература

Афанасьев В.Г. Основы философских знаний. М., 1987.

Кандыбо Г. В., Страшников В. М. Материя, движение, техника. — Минск, 1977.

Корухов В.В., Шарыпов О.В. Об онтологическом аспекте бесконечного // Философия науки. - 1998. - № 1 (2). - С. 27-51

Ахундов М. Пространство и время в физическом познании. - М., 1982 г

Наши рекомендации