Концепция «Большого Взрыва».
Прокручивая ретроспективно киноленту о жизни Вселенной, мы могли бы увидеть, что было время, а именно около 25 млрд. лет тому назад, когда все галактики были собраны вместе в одной точке. Разумеется, к такой оценке нужно относиться с осторожностью и представлять, что она справедлива только по порядку величины. Во-первых, гравитационное притяжение непрерывно замедляет движение галактик; во-вторых, почти наверняка галактики сами образовались лишь примерно через миллиард лет после начала расширения. Но остается фактом, что Вселенная когда-то начинала свое развитие, будучи намного более плотной и, занимая область намного меньшую, чем в настоящее время; ее эволюцию можно сравнить разве что с гигантским взрывом глобального масштаба – с так называемым «Большим взрывом». Примечательно, что указанный масштаб времени, в общем, согласуется с результатами, полученными при исследовании эволюции звезд.
Наличие разбегания галактик в настоящее время требует предположения о том, что в прошлом вещество Вселенной было более плотным. Экстраполяция наблюдаемых скоростей на значительно более ранние периоды позволяет оценить время, когда это расширение началось в результате Большого Взрыва – около 25 млрд. лет назад. Известные на сегодняшний день законы физики позволяют воспроизвести достаточно правдоподобный сценарий расширения, начиная с нескольких тысячных секунды после Большого Взрыва (что происходило до этого, напр. предшествовало ли ему сжатие предыдущего цикла, на современном этапе развития естествознания не обсуждается, поскольку не может быть хотя бы косвенно проверено экспериментом).
Теория горячей Вселенной была первоначально разработана Г. А. Гамовым и др. для объяснения наблюдаемого химического состава Вселенной. Ведь первоначально все вещество представляло собой в основном водородную плазму, а затем, в эпоху так называемого нуклеосинтеза, образовались ядра более тяжелых химических элементов – различных изотопов гелия и лития. К ядрам водорода, которые представляют собой одиночные протоны, примешались также более сложные ядра дейтерия - тяжелого изотопа водорода. Так в нашем мире появилось разнообразие химических элементов. Однако пройдет еще немало времени, прежде чем образуются первые звезды, в которых в процессе эволюции родится все многообразие химических элементов, наблюдаемых сегодня.
Какой же была Вселенная в момент своего рождения? Наш вопрос имеет смысл, только если он относится к мгновению, следующему непосредственно за началом, то есть к моменту времени, когда применение физических законов становится уже разумным. Спустя всего одну сотую секунды после начала космос занимал гораздо меньший объем, чем теперь, и был заполнен сжатым веществом при температуре в миллиарды градусов с плотностью в триллионы раз выше, чем плотность воды. В этих условиях не могли существовать ни ядра, ни тем более атомы, которые были бы разрушены бурным тепловым движением. Расширение Вселенной происходило с очень большой скоростью. Через несколько минут расширение Вселенной и ее охлаждение достигли такой степени, что стало возможным образование атомных ядер. Спустя еще миллион лет температура упала ниже трех тысяч градусов, и началось образование атомов. Бросив взгляд вокруг себя в ту эпоху, мы увидели бы пространство, заполненное облаком из раскаленных газов и ослепляющим светом. Еще через миллиард лет началось образование галактик, звезд и стабильного вещества в современном виде.
Свет, излученный первоначальным газовым облаком, все еще бродит во Вселенной; претерпев сильные изменения при расширении Хаббла, он сейчас заметен только в виде микроволнового фона (так называемого «реликтового излучения»). Это самое древнее из всех известных свидетельств истории нашей Вселенной. Оно было обнаружено двумя астрофизиками из лаборатории фирмы «Белл телефон» Пензиасом и Уилсоном, удостоенными за свое открытие Нобелевской премии в 1978 г.
Нуклеосинтез стал еще одним шагом к «нашему», привычному миру. Это произошло, когда Вселенной было «уже» 100 секунд. К тому времени наш мир продолжал расширяться и остывать. Вещество существовало в форме плазмы, когда электроны отделены от ядер атомов. Привычный для нас вид вещество во Вселенной приняло в так называемую эпоху рекомбинации. Эта эпоха ознаменовалась замечательным событием – температура упала ниже 10000 градусов и плазма превратилась в обычный, нейтральный газ. При этом вещество освободилось от «бремени» излучения, и стало развиваться уже по-своему. Дело в том, что когда вещество непрерывно взаимодействует с излучением, ионизируется им, то не образуются конденсации вещества и сложные структуры в нем. Будучи «свободным», вещество начинает структурироваться, «скучиваться». Эти сгущения служат основой той сложной структуры, которую мы сейчас наблюдаем.
Излучение, также освободившееся от вещества, получило возможность практически беспрепятственно двигаться по всей Вселенной. Благодаря этому мы сейчас можем поймать древние кванты электромагнитного излучения и в принципе пронаблюдать все события в развивающейся Вселенной после эпохи рекомбинации. Но как же тогда образовались более тяжелые элементы в природе, в том числе и те, из которых состоит наша Земля и человеческое тело? Более тяжелые элементы образовались в недрах звезд. Элементы легче железа образовались в результате термоядерного синтеза в звездах, а тяжелее железа - в результате вспышек сверхновых.
В первые моменты температура Вселенной была столь высока, что в ней могли существовать лишь самые легкие элементарные частицы: фотоны, нейтрино и т.д. Быстрое расширение горячего сжатого «газа» вело к его охлаждению. Уже на первых секундах расширения стало возможным образование электронов и протонов, существующих в виде горячей плазмы и сильно взаимодействующих друг с другом и излучением, на долю которого приходилась основная доля энергии во Вселенной. Таким образом, на ранней стадии, длящейся около одного млн. лет, во Вселенной преобладали электромагнитные и ядерные взаимодействия.
Спустя указанный срок температура упала до величины, допускающей рекомбинацию электронов с протонами в нейтральные атомы водорода. С этого момента взаимодействие излучения с веществом практически прекратилось, доминирующая роль перешла к гравитации. Возникшее на стадии горячей Вселенной и постепенно остывающее в результате ее расширения излучение дошло до нас в виде реликтового фона.
На последующей стадии «холодной» Вселенной на фоне продолжающегося расширения и остывания вещества стали возникать гравитационные неустойчивости: за счет флуктуаций плотности водородного газа стали возникать зоны его уплотнения, притягивающие к себе газ из соседних областей и еще больше усиливающие собственное гравитационное поле. Самоорганизация вещества во Вселенной (сложная неравновесная система, описываемая нелинейными уравнениями гравитации) в конечном итоге привела к возникновению крупномасштабной квазиупорядоченной межгалактической ячеистой структуры, а ее дальнейшая фрагментация дала начало будущим галактикам и звездам. Анализ деталей этого процесса возможен на основании весьма сложных уравнений гидрогазодинамики – теории нестационарного движения вещества и до сих пор удовлетворительно не разработан. Достаточно ясно, что в результате гравитационного сжатия выделяющаяся энергия в конечном итоге приводила к вторичному разогреву водородного топлива до температур, достаточных для начала термоядерных реакций водородного цикла.
Первая стадия жизни звезды подобна солнечной – в ней доминируют реакции водородного цикла. Температура звезды определяется ее массой и степенью гравитационного сжатия, которому противостоит главным образом световое давление. Звезда образует относительно устойчивую колебательную систему, ее периодические слабые сжатия и расширения определяют звездные циклы. По мере выгорания водорода в центре звезды, ее гелиевое ядро остывает, а зона протекания реакции синтеза перемещается на периферию. Звезда «разбухает», поглощая планеты ее системы, и остывает, превращаясь в красного гиганта.
Дальнейшее сжатие гелиевого ядра поднимает его температуру до зажигания реакций гелиевого цикла. Водородная оболочка постепенно рассеивается, образуя звездную туманность, а сильно сжатое ядро раскаляется до высоких температур, соответствующих свечению бело-голубым светом («белый карлик»). По мере выгорания топлива звезда угасает, превращаясь в устойчивого «черного карлика» - характерный итог эволюции большинства звезд с массой порядка солнечной.
Более массивные звезды на этапе превращения в белого карлика теряют водородную оболочку в результате мощного взрыва, сопровождающегося многократным увеличением светимости («сверхновые звезды»). После выгорания их ядер сил давления в плазме оказывается недостаточно для компенсации гравитационных сил. В результате уплотнения вещества электроны «вдавливаются» в протоны с образованием нейтральных частиц. Возникает нейтронная звезда – компактное (радиус несколько километров) и массивное образование, вращающееся с фантастически высокой для космических объектов скоростью: около одного оборота в секунду. Вращающееся вместе со звездой его магнитное поле посылает в пространство узконаправленный луч электромагнитного (часто- рентгеновского) излучения, действуя подобно маяку. Источники мощного периодического излучения, открытые в радиоастрономии, получили название пульсаров.
Звезды с массой, превосходящей массу Солнца более чем в два раза, обладают столь сильным гравитационным полем, что на стадии нейтронной звезды их сжатие не останавливается. В результате дальнейшего неограниченного сжатия – гравитационного коллапса звезда уменьшается до таких размеров, что скорость, необходимая для ухода тела с ее поверхности на бесконечность превышает предельную (скорость света). При этом ни одно тело (даже свет) не может покинуть непрерывно сжимающуюся звезду, представляющую собой «черную дыру», размерами всего несколько километров. Существование черных дыр допускают уравнения общей теории относительности. В области черной дыры пространство-время сильно деформировано.
Астрономические наблюдения чёрных дыр затруднены, поскольку такие объекты не излучают свет. Однако обнаружены звезды, совершающие движение, характерное для компонент двойных звезд, хотя парной звезды не наблюдается. Весьма вероятно, что её роль играет черная дыра или не излучающая нейтронная звезда.
Помимо перечисленных обнаружен ряд астрофизических объектов, свойства которых не укладываются в приведенные схемы – квазары. Наблюдаемое их излучение аналогично пульсарному, но очень сильно смещено в красную область. Величина красного смещения указывает на то, что квазары находятся так далеко, что их наблюдаемая яркость соответствует излучению, превосходящему по интенсивности излучения галактического скопления. В то же время наличие быстрых изменений интенсивности ставит вопрос о механизме согласования излучения элементами системы, размеры которой должны составлять тысячи световых лет.
5. Эволюция планеты Земля.
Сначала воды разделились на сушу и море. Потом стал свет, появились растения, небесные светила, пресмыкающиеся и, наконец, человек – таков приблизительный план сотворения Богом планеты Земля.
Как это не покажется странным, но с некоторыми оговорками эта модель вполне отвечает современным представлениям ученых о развитии и Солнечной системы и нашей планеты. Конечно, научная версия сотворения Земли предполагает не семь, а как минимум тридцать пять миллиардов дней (или сто миллионов лет).
Как «слепить» Землю за сто миллионов лет? Первые десять миллиардов лет жизни нашей Галактики, казалось бы, не предвещали появления Солнечной системы. Межзвездное пространство было заполнено веществом, которое время от времени то собиралось, то рассеивалось следующими поколениями звезд. Но около четырех с половиной миллиардов лет назад произошел взрыв сверхновой звезды. Может быть, он и послужил непосредственным толчком к началу формирования из межзвездного облака нашего Солнца и его планетной системы. Дело в том, что обычно исходная плотность межзвездных облаков недостаточна для самопроизвольного развития в них процессов образования звезд и планет. Однако взрывы сверхновых сопровождаются возникновением в межзвездной среде ударных волн, которые приводят к повышению давления и плотности вещества. При этом могут возникать сгущения, способные в дальнейшем сжиматься уже за счет самогравитации.
Примерно так, по расчетам ученых, и происходило зарождение нашей системы, в центральной области которой по мере роста давления и температуры сформировался гигантский газовый сгусток – Протосолнце. Одновременно со сжатием протосолнечного облака под влиянием центробежных сил его периферийные участки стягивались к экваториальной плоскости вращения облака, превращаясь, таким образом, в плоский диск - протопланетное облако.
Однако формирование Солнца как нормальной желтой звезды из сжимающегося первичного сгустка газов и пыли происходило значительно быстрее, чем формирование планет - «всего» несколько миллионов лет. Поэтому молодое Солнце неизбежно влияло на условия слипания вещества в окружающем его протопланетном диске. За счет солнечного ветра (высокоэнергетического потока заряженных частиц) из околосолнечного пространства были выметены на периферию нашей системы все газовые и летучие компоненты исходного облака.
С другой стороны, молодое Солнце таким образом «прогрело» первоначальное газопылевое облако, что еще до начала процесса формирования планет оно оказалось существенно дифференцированным. Так, например, есть определенная зависимость плотности планет от их расстояния от Солнца, и только внешние планеты Солнечной системы обладают массивными газовыми оболочками. Если бы кому-то довелось наблюдать со стороны все то, что творилось в нашей системе, то наверняка картина напоминала бы раскрученный с большой силой «волчок», центром которого было Солнце. Но постепенно с ростом плотности в этом плоском диске резко возросла вероятность столкновения частиц и их слипания. Так появились первичные тела диаметром всего в несколько метров. Дальнейшее уплотнение первичного роя тел способствовало их дальнейшему росту и постепенному превращению в более крупные тела с поперечными размерами уже на многие десятки и сотни километров. В этих условиях у таких крупных «зародышей» стал появляться самостоятельный характер – собственное гравитационное поле, которое еще более увеличивало возможности захвата мелких тел. Одним из таких зародышей четыре с половиной миллиарда лет назад стала наша Земля.
Этот способ моделирования описал в 1969 году в своей книге В. С. Сафронов. В ней утверждалось, что в начале своего развития Земля не была огненно-жидким шаром, а представляла собой достаточно холодное образование. И если внутри нее и были разогретые участки, то это были магматические очаги, но в целом расплавленной Земля не была. Однако в этой фундаментальной теории еще в семидесятые годы образовалась трещина. Дело в том, что по расчетам учёного А. Витязева, «В. С. Сафронов существенно занизил оценки размеров крупнейших тел, падающих на Землю». Ученый предполагал, что максимальный диаметр тел, которые сталкивались с нашей молодой планетой, составлял не более ста километров. Однако, по расчетам А. Витязева, вполне вероятными были катастрофы, когда встречались тела с лунными размерами. Этот просчет в сложной модели развития Земли неминуемо привел к недоучету температуры, которая была внутри Земли. «В реальности эта цифра оказалась всего-то на какие-то сотни градусов больше, - объясняет А. Витязев, - но это уже радикально меняло ситуацию».
И в конце семидесятых годов стало ясно, что эти пресловутые сотни градусов позволили начаться эволюции Земли еще в ходе ее формирования. И в то время, когда внутри планеты уже началась дифференциация вещества, по ее поверхности все еще «стучали» метеориты и астероиды, которые одновременно привносили различные газы, а часть их удаляли. Кроме этого за последние десятилетия произошло еще два события, которые коренным образом изменили наши представления о ранней эволюции Земли. Первое, и, пожалуй, самое интересное – это открытие астрофизиками около сотни газопылевых дисков около молодых звезд солнечного типа. Эти диски оказались такой же массы и таких же размеров, как и диск около нашего молодого Солнца.
Другое открытие заключается в доказательстве того, что наблюдаемые кратеры на твердых поверхностях многих планет и спутников – это лишь последние следы, по которым можно восстановить только часть спектра относительно маломассивных тел, формировавших планеты. А промежуточные по своим размерам тела, которые и определили общее число планет Солнечной системы, особенности их орбит, исчезли в катастрофических столкновениях.