Научные и ненаучные формы знания (мифология, религия, философия и искусство)

Квазинаука – это область такого знания, в котором в разной степени и пропорции содержатся ложные и, возможно, истинные утверждения и которая может содержать утверждения как фактуального, так и сфальсифицированного характера.

Паранаучное знание - формы познавательной деятельности, возникающие как альтернатива или дополнение к существующим видам научного знания. Главный критерий отнесения конкретной формы познавательной активности к области П.З. - несоответствие общепринятым критериям построения и обоснования научных теорий, а также неспособность дать убедительное рациональное истолкование изучаемых феноменов.

П.З. существует как постоянный контекст развивающегося научного знания в виде протонауки, девиантной науки и псевдонаучного (ненаучного) знания. Протонаукапредставляет собой первичные формы осмысления реальности, возникающие в процессе становления конкретно-исторического типа научного знания при отсутствии необходимого эмпирического материала и нестабильности (или неразработанности) методов исследования и нормативов построения теории.

Псевдонаука, фиксируя внимание на реальной неполноте научного знания и ограниченности его методов, в то же время не способна представить ему собственную позитивную программу, оставаясь даже в оппозиции зеркальным отражением существующих административно-волевых форм руководства наукой с их почтением к предписаниям сверху и нетерпимостью к инакомыслию.

Принято выделять различные типы паранаучных концепций, специфицирующиеся принадлежностью к тому или иному культурно-историческому контексту своего возникновения:

· Древнейшие учения медицинского, алхимического, астрологического, гадательного (дивинация) и пр. характера, имевшие распространение в Древнейших Египте, Вавилоне, Индии и Китае;

· Древние учения аналогичного типа, свойственные для Античной Греции и Античного Рима (например, герметизм, мантика, некромантия и нумерология);

· Неортодоксальные средневековые учения (такие как каббала, алхимия);

· Церковные средневековые учения (демонология, учение об аде, экзорцизм, арифмомантия);

· Эволюционно восходящие к средневековым учения Эпохи Возрождения, Нового и Новейшего Времени (дополняясь такими направлениями, как физиогномика, хиромантия и спиритизм);

· Некоторые побочные разработки учёных позднего времени, лишённые собственного научного характера (например, опыты по телепатии В. М. Бехтерева или по достижению бессмертия через переливание крови А. А. Богданова)

ЭТО ИЗ ДРУГОГО ИСТОЧНИКА, НО МАЛО ЛИ МОЖЕТ ОТТУДА ЧТО ТО ВЗЯТЬ МОЖНО…..

Познание не ограничено сферой науки, знание в той или иной своей форме существует и за пределами науки. Появление научного знания не отменило и не упразднило, не сделало бесполезными другие формы знания. Полная и всеобъемлющая демаркация - отделение науки от ненауки - так и не увенчалась успехом до сих пор.

Весьма убедительно звучат слова Л. Шестова о том, что, "по-видимому, существуют и всегда существовали ненаучные приемы отыскания истины, которые и приводили если не к самому познанию, то к его преддверию, но мы так опорочили их современными методологиями, что не смеем и думать о них серьезно" [1].

Каждой форме общественного сознания: науке, философии, мифологии, политике, религии и т.д. - соответствуют специфические формы знания. Различают также формы знания, имеющие понятийную, символическую или художественно-образную основу. В самом общем смысле научное познание - это процесс получения объективного, истинного знания. Научное познание имеет троякую задачу, связанную с описанием, объяснением и предсказанием процессов и явлений действительности. В развитии научного познания чередуются революционные периоды, так называемые научные революции, которые приводят к смене теорий и принципов, и периоды нормального развития науки, на протяжении которых знания углубляются и детализируются. Научные знания характеризуются объективностью, универсальностью, претендуют на общезначимость.

Когда разграничивают научное, основанное на рациональности, и вненаучное знание, то важно понять: вненаучное знание не является чьей-то выдумкой или фикцией. Оно производится в определенных интеллектуальных сообществах, в соответствии с другими (отличными от рационалистических) нормами, эталонами, имеет собственные источники и средства познания. Очевидно, что многие формы вненаучного знания старше знания, признаваемого в качестве научного, например, астрология старше астрономии, алхимия старше химии. В истории культуры многообразные формы знания, отличающиеся от классического научного образца и стандарта и отнесенные к "ведомству" вненаучного знания, объединяются общим понятием - эзотеризм.

Выделяют следующие формы вненаучного знания:

1) ненаучное, понимаемое как разрозненное несистематическое знание, которое не формализуется и не описывается законами, находится в противоречии с существующей научной картиной мира;

2) донаучное, выступающее прототипом, предпосылочной базой научного;

3) паранаучное - несовместимое с имеющимся гносеологическим стандартом. Широкий класс паранаучного (пара- от греч. - около, при) знания включает в себя учения или размышления о феноменах, объяснение которых не является убедительным с точки зрения критериев научности;

4) лженаучное - сознательно эксплуатирующее домыслы и предрассудки, Лженаука - это ошибочное знание, часто представляет науку как дело аутсайдеров. Иногда лженаучное связывают с патологической деятельностью психики творца, которого в обиходе величают "маньяком", "сумасшедшим". В качестве симптомов лженауки выделяют малограмотный пафос, принципиальную нетерпимость к опровергающим доводам, а также претенциозность. Лженаучные знания очень чувствительны к злобе дня, сенсации. Их особенностью является то, что они не могут быть объединены парадигмой, не могут обладать систематичностью, универсальностью. Они пятнами и вкраплениями сосуществуют с научными знаниями. Считается, что лженаучное обнаруживает себя и развивается через квазинаучное;

5) квазинаучное знание ищет себе сторонников и приверженцев, опираясь на методы насилия и принуждения. Оно, как правило, расцветает в условиях жестко иерархизированной науки, где невозможна критика власть предержащих, где жестко проявлен идеологический режим. В истории нашей страны периоды "триумфа квазинауки" хорошо известны: лысенковщина, фиксизм как квазинаука в советской геологии 50-х гг., шельмование генетики, кибернетики и т.п.;

6) антинаучное - утопичное и сознательно искажающее представление о действительности. Приставка "анти" обращает внимание на то, что предмет и способы исследования противоположны науке. Это как бы подход с "противоположным знаком". С ним связывают извечную потребность в обнаружении общего легкодоступного "лекарства от всех болезней". Особый интерес и тяга к антинауке возникают в периоды социальной нестабильности. Но хотя данный феномен достаточно опасен, принципиальное избавление от антинауки невозможно;

7) псевдонаучное знание представляет собой интеллектуальную активность, спекулирующую на совокупности популярных теорий, например, истории о древних астронавтах, о снежном человеке, о чудовище из озера Лох-Несс.

Еще на ранних этапах человеческой истории существовало обыденно-практическое знание, доставлявшее элементарные сведения о природе и окружающей действительности. Его основой был опыт повседневной жизни, имеющий, однако, разрозненный, несистематический характер, представляющий собой простой набор сведений. Люди, как правило, располагают большим объемом обыденного знания, которое производится повседневно в условиях элементарных жизненных отношений и является исходным пластом всякого познания. Иногда аксиомы здравомыслия противоречат научным положениям, препятствуют развитию науки, вживаются в человеческое сознание так крепко, что становятся предрассудками и сдерживающими прогресс преградами. Иногда, напротив, наука длинным и трудным путем доказательств и опровержений приходит к формулировке тех положений, которые давно утвердили себя в среде обыденного знания.

Последнее включает в себя и здравый смысл, и приметы, и назидания, и рецепты, и личный опыт, и традиции. Обыденное знание, хотя и фиксирует истину, но делает это несистематично и бездоказательно. Его особенностью является то, что оно используется человеком практически неосознанно и в своем применении не требует каких бы то ни было предварительных систем доказательств. Иногда знание повседневного опыта даже перескакивает ступень артикуляции, а просто молчаливо руководит действиями субъекта.

Другая его особенность - принципиально бесписьменный характер. Те пословицы и поговорки, которыми располагает фольклор каждой этнической общности, лишь фиксируют его факт, но никак не прописывают теорию обыденного знания. Заметим, что ученый, используя узкоспециализированный арсенал научных понятий и теорий для данной конкретной сферы действительности, всегда внедрен также и в сферу неспециализированного повседневного опыта, имеющего общечеловеческий характер. Ибо ученый, оставаясь ученым, не перестает быть просто человеком.

Иногда обыденное знание определяют посредством указания на общие представления здравого смысла или неспециализированный повседневный опыт, которые обеспечивает предварительное ориентировочное восприятие и понимание мира. В данном случае последующей дефиниции подвергается понятие здравого смысла.

К исторически первым формам человеческого знания относят игровое познание, которое строится на основе условно принимаемых правил и целей. Оно дает возможность возвыситься над повседневным бытием, не заботиться о практической выгоде и вести себя в соответствии со свободно принятыми игровыми нормами. В игровом познании возможны сокрытие истины, обман партнера. Оно носит обучающе-развивающий характер, выявляет качества и возможности человека, позволяет раздвинуть психологические границы общения.

Особую разновидность знания, являющегося достоянием отдельной личности, представляет личностное знание. Оно ставится в зависимость от способностей того или иного субъекта и от особенностей его интеллектуальной познавательной деятельности. Коллективное знание общезначимо, или надличностно, и предполагает наличие необходимой и общей для всех системы понятий, способов, приемов и правил его построения. Личностное знание, в котором человек проявляет свою индивидуальность и творческие способности, признается необходимой и реально существующей компонентой знания. Оно подчеркивает тот очевидный факт, что науку делают люди и что искусству или познавательной деятельности нельзя научиться по учебнику, оно достигается лишь в общении с мастером.

Особую форму вненаучного и внерационального знания представляет собой так называемая народная наука, которая в настоящее время стала делом отдельных групп или отдельных субъектов: знахарей, целителей, экстрасенсов, а ранее являлась привилегией шаманов, жрецов, старейшин рода. При своем возникновении народная наука обнаруживала себя как феномен коллективного сознания. В эпоху доминирования классической науки она потеряла статус интерсубъективности и прочно расположилась на периферии, вдали от центра официальных экспериментальных и теоретических изысканий. Как правило, народная наука существует и транслируется от наставника к ученику в бесписьменной форме. Иногда можно выделить ее конденсат в виде заветов, примет, наставлений, ритуалов и пр. И, несмотря на то, что в народной науке видят ее огромную и тонкую, по сравнению со скорым рационалистическим взглядом, проницательность, ее часто обвиняют в необоснованных притязаниях на обладание истиной.

В картине мира, предлагаемой народной наукой, большое значение имеет круговорот могущественных стихий бытия. Природа выступает как "дом человека", а последний в свою очередь - как органичная его частичка, через которую постоянно проходят силовые линии мирового круговорота. Считается, что народные науки обращены, с одной стороны, к самым элементарным, а с другой - к самым жизненно важным сферам человеческой деятельности, как-то: здоровье, земледелие, скотоводство, строительство. Символическое в них выражено минимально.

Поскольку разномастная совокупность внерационального знания не поддается строгой и исчерпывающей классификации, можно столкнуться с выделением следующих трех видов познавательных феноменов: паранормальное знание, псевдонаука и девиантная наука. Причем их соотношение с научной деятельностью или степень их "научности" возрастают по восходящей. То есть фиксируется некая эволюция от паранормального знания к разряду более респектабельной псевдонауки и от нее к девиантному знанию. Это косвенным образом свидетельствует о развитии вненаучного знания:

1) Широкий класс паранормального знания включает в себя учения о тайных природных и психических силах и отношениях, скрывающихся за обычными явлениями. Самыми яркими представителями этого типа знания считаются мистика и спиритизм.

Для описания способов получения информации, выходящей за рамки науки, кроме термина "паранормальность" используется термин "внечувственное восприятие" (или "парачувствительность", "пси-феномены"). Он предполагает возможность получать информацию или оказывать влияние, не прибегая к непосредственным физическим способам. Наука пока еще не может объяснить задействованные в данном случае механизмы, как не может и игнорировать подобные феномены. Различают экстрасенсорное восприятие (ЭСВ) и психокинез. ЭСВ разделяется на телепатию и ясновидение. Телепатия предполагает обмен информацией между двумя и более особями паранормальными способами. Ясновидение означает способность получать информацию по некоторому неодушевленному предмету (ткань, кошелек, фотография и т.п.). Психокинез - это способность воздействовать на внешние системы, находящиеся вне сферы нашей моторной деятельности, перемещать предметы нефизическим способом. Заслуживает внимание то, что в настоящее время исследование паранормального ставится на конвейер науки, которая после серий различных экспериментов делает свои выводы.

2) Для псевдонаучного знания характерна сенсационность тем, признание тайн и загадок, а также "умелая обработка фактов". Ко всем этим априорным условиям деятельности в данной сфере присоединяется свойство исследования через истолкование. Привлекается материал, который содержит высказывания, намеки или подтверждения высказанным взглядам и может быть истолкован в их пользу. К. Поппер достаточно высоко ценил псевдонауку, прекрасно понимая, что наука может ошибаться и что псевдонаука "может случайно натолкнуться на истину". У него есть и другой вывод: если некоторая теория оказывается ненаучной - это не значит, что она не важна.

По форме псевдонаука - это прежде всего рассказ или история о тех или иных событиях. Такой типичный для нее способ подачи материала называют "объяснением через сценарий". Другой отличительный признак - безошибочность. Бессмысленно надеяться на корректировку псевдонаучных взглядов, ибо критические аргументы никак не влияют на суть истолкования рассказанной истории.

3) Характеристика девиантного и анормального знания. Термин "девиантное" означает отклоняющуюся от принятых и устоявшихся стандартов познавательную деятельность. Причем сравнение происходит не с ориентацией на эталон и образец, а в сопоставлении с нормами, разделяемыми большинством членов научного сообщества. Отличительной особенностью девиантного знания является то, что им занимаются, как правило, люди, имеющие научную подготовку, но по тем или иным причинам выбирающие весьма расходящиеся с общепринятыми представлениями методы и объекты исследования. Представители девиантного знания работают, как правило, в одиночестве либо небольшими группами. Результаты их деятельности, равно как и само направление, обладают довольно-таки кратковременным периодом существования.

Иногда встречающийся термин "анормальное знание" не означает ничего иного, кроме того, что способ получения знания либо само знание не соответствуют тем нормам, которые считаются общепринятыми в науке на данном историческом этапе. Весьма интересно подразделение анормального знания на три типа:

а) 1 тип возникает в результате расхождения регулятивов здравого смысла с установленными наукой нормами. Этот тип достаточно распространен и внедрен в реальную жизнедеятельность людей. Он не отталкивает своей аномальностью, а привлекает к себе внимание в ситуации, когда действующий индивид, имея специальное образование или специальные научные знания, фиксирует проблему расхождения норм обыденного мироотношения и научного (например, в воспитании, в ситуациях общения с младенцами и пр.).

б) 2 тип возникает при сопоставлении норм одной парадигмы с нормами другой.

в) 3 тип обнаруживается при объединении норм и идеалов из принципиально различных форм человеческой деятельности.

Уже давно вненаучное знание не рассматривают только как заблуждение. И раз существуют многообразные формы вненаучного знания, следовательно, они отвечают какой-то изначально имеющейся в них потребности. Можно сказать, что вывод, который разделяется современно мыслящими учеными, понимающими всю ограниченность рационализма, сводится к следующему. Нельзя запрещать развитие вненаучных форм знания, как нельзя и культивировать сугубо и исключительно псевдонауку, нецелесообразно также отказывать в кредите доверия вызревшим в их недрах интересным идеям, какими бы сомнительными первоначально они ни казались. Даже если неожиданные аналогии, тайны и истории окажутся всего лишь "инофондом" идей, в нем очень остро нуждается как интеллектуальная элита, так и многочисленная армия ученых.

Достаточно часто звучит заявление, что традиционная наука, сделав ставку на рационализм, завела человечество в тупик, выход из которого может подсказать вненаучное знание. К вненаучным же дисциплинам относят те, практика которых основывается на иррациональной деятельности на мифах, религиозных и мистических обрядах и ритуалах. Интерес представляет позиция современных философов науки, и в частности П. Фейерабенда, который уверен, что элементы нерационального имеют право на существование внутри самой науки.

Развитие подобной позиции можно связать и с именем Дж. Холтона, который пришел к выводу, что в конце XX столетия в Европе возникло и стало шириться движение, провозгласившее банкротство науки.

Мнение о том, что именно научные знания обладают большей информационной емкостью, также оспаривается сторонниками подобной точки зрения. Наука может "знать меньше" по сравнению с многообразием вненаучного знания, так как все, что она знает, должно выдержать жесткую проверку на достоверность фактов, гипотез и объяснений. Не выдерживающее эту проверку знание отбрасывается, и даже потенциально истинная информация может оказаться за пределами науки.

Иногда вненаучное знание именует себя как Его Величество Иной способ истинного познания. И поскольку интерес к многообразию форм вненаучного знания в последние годы повсеместно и значительно возрос, а престиж профессии инженера и ученого значительно снизился, то напряжение, связанное с тенденцией ухода во вненауку, возросло.

Третья научная революция

Конец XIX – начало XX в. ознаменовались целой серией блестящих открытий в физике (открытие сложного строения атома, открытие явления радиоативности, рентгеновских лучей, дискретного характера электромагнитного излучения и др.), возникновением в химии и биологии генетики на основе законов Г. Менделя. Их общим итогом явился сокрушительный удар по механистической картине мира, смена старой парадигмы. С середины 90-х годов XIX в. началась третья глобальная научная революция.

Наиболее значимыми теориями, положенными в основу новой научной парадигмы, стали теория относительности Эйнштейна и квантовая механика. С появлением этих теорий изменилась и естественно-научная картина мира. Рассмотрим, какие принципиальные изменения произошли в представлениях об окружающем мире.

Теория относительности Эйнштейна привела к отказу от представлений о существовании центра Вселенной. Наши представления об объектах окружающего мира имеют смысл только в том случае, если они связаны с какой-либо системой отсчета. Иначе говоря, наши знания о мире относительны.

Изучение микромира привело к переосмысливанию многих понятий классического естествознания (траектория, одновременность событий, абсолютный характер пространства и времени, причинность, непрерывность и т. д.). Например, описывая движение микрочастицы, мы уже не можем пользоваться тем определением траектории, которое давалось в механике Ньютона (траектория – линия, вдоль которой движется частица). Связано это с тем, что в микромире действуют вероятностные законы, следовательно, местоположение частицы в пространстве может быть указано только с той или иной долей вероятности.

В конце XIX в., помимо открытий в области электричества и магнетизма, был сделан еще целый ряд открытий: открытие рентгеновских лучей (1895, В. Рентген), электрона (1895, Дж. Томсон) и установление зависимости его массы от скорости, открытие радиоактивности (1896, А. Беккерель), фотоэффекта и его законов и др.

Новая парадигма изменила представления об отношениях субъекта и объекта познания. Объект познания перестал восприниматься как существующий «сам по себе». Оказалось, что его описание зависит от условий познания.

Новые теории показали, что абсолютной истины достичь невозможно, абсолютно точную картину мира не удастся нарисовать никогда. Любая картина мира может обладать лишь относительной истинностью. Например, мыслители древности считали, что мельчайшей частицей вещества является атом. В конце XIX в. выяснили сложное строение атома: он состоит из протонов, нейтронов и электронов. В настоящее время уже доказано, что протон также является сложной частицей, состоящей из кварков. На каждом этапе познания утверждения о строении вещества являются относительной истиной, но последнее утверждение ближе к абсолютной истине.

Таким образом, третья научная революция привела к смене теоретических и методологических установок во всем естествознании. Отличительной особенностью этого этапа научного познания является то, что наряду с физикой теперь в естествознании лидирует целая группа отраслей: химия, биология, кибернетика, космонавтика и др. Уже в рамках новой, неклассической картины мира произошли мини-революции в биологии (развитие генетики), космологии (концепция нестационарной Вселенной) и т. д.

В ХХ веке в неклассической науке появилось осознание зависимости всех наших знаний от познающего человека – субъекта. Например, физики признают, что в квантовой механике получается знание не о частице, как она существует сама по себе, а о том ее состоянии, в которое она пришла в результате воздействия на нее прибора в процессе эксперимента. И ХХ в. обнаружил разрушительный потенциал науки, заставил задуматься о том, как привести в соответствие развитие науки и гуманистические идеалы, как сделать их органической частью познавательной и практической деятельности человека.

+ ИЗ ДРУГИХ ШПОР (Так, просто почитать можно для развития…..)

В конце ХIХ - начале XX в. считалось, что научная картина мира практически построена, и если и предстоит какая-либо работа исследователям, то это уточнение некоторых деталей. Но вдруг последовал целый ряд открытий, которые никак в нее не вписывались.

В 1896 г. французский физик А. Беккерель (1852-1908) открыл явление самопроизвольного излучения урановой соли, природа которого не была понята. В поисках элементов, испускающих подобные "беккерелевы лучи", Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934) в 1898 г. открывают полоний и радий, а само явление называют радиоактивностью. В 1897 г. английский физик Дж. Томсон (1856-1940) открывает составную часть атома - электрон, создает первую, но очень недолго просуществовавшую модель атома. В 1900 г. немецкий физик М. Планк (1858-1947) предложил новый (совершенно не отвечающий классическим представлениям) подход: рассматривать энергию электромагнитного излучения величину дискретную, которая может передаваться только отдельными, хотя и очень небольшими, порциями - квантами. На основе этой гениальной догадки ученый не только получил уравнение теплового излучения, но она легла в основу квантовой теории.

Английский физик Э. Резерфорд (1871-1937) экспериментально устанавливает, что атомы имеют ядро, в котором сосредоточена вся их масса, а в 1911 г. создает планетарную модель строения атома, согласно которой электроны движутся вокруг неподвижного ядра и в соответствии с законами классической электродинамики непрерывно излучают электромагнитную энергию. Но ему не удается объяснить, почему электроны, двигаясь вокруг, ядра по кольцевым орбитам и непрерывно испытывая ускорение, следовательно, излучая все время кинетическую энергию, не приближаются к ядру и не падают на его поверхность.

Датский физик Нильс Бор (1885-1962), исходя из модели Резерфорда и модифицируя ее, введя постулаты (постулаты Бора), утверждающие, что в атомах имеются стационарные орбиты, при движении по которым электроны не излучают энергии, ее излучение происходит только в тех случаях, когда электроны переходят с одной стационарной орбиты на другую, при этом происходит изменение энергии атома, создал квантовую модель атома. Она получила название модели Резерфорда-Бора. Это была последняя наглядная модель атома.

В 1924 г. французский физик Луи де Бройль (1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только электромагнитного излучения, но и других микрочастиц. В 1925 г. швейцарский физик-теоретик В. Паули (1900-1958) сформулировал принцип запрета: ни в атоме, ни в молекуле не может быть двух электронов, находящихся в одинаковом состоянии.

В 1926 г. австрийский физик-теоретик Э. Шредингер (1887-1961) вывел основное уравнение волновой механики, а в 1927 г. немецкий физик В. Гейзенберг (1901-1976) - принцип неопределенности, утверждавший: значения координат и импульсов микрочастиц не могут быть названы одновременно и с высокой степенью точности.

В 1929 г. английский физик П. Дирак (1902-1984) заложил основы квантовой электродинамики и квантовой теории гравитации, разработал релятивистскую теорию движения электрона, на основе которой предсказал (1931) существование позитрона - первой античастицы. Античастицами назвали частицы, подобные своему двойнику, но отличающиеся от него электрическим зарядом, магнитным моментом и др. В 1932 г. американский физик К. Андерсон (р. 1905) открыл позитрон в космических лучах.

В 1934 г. французские физики Ирен (1897-1956) и Фридерик Жолио-Кюри (1900-1958) открыли искусственную радиоактивность, а в 1932 г. английский физик Дж. Чедвик (1891- 1974) - нейтрон. Создание ускорителей заряженных частиц способствовало развитию ядерной физики, была выявлена неэлементарность элементарных частиц. Но поистине революционный переворот в физической картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший специальную (1905) и общую (1916) теорию относительности.

Как мы помним из предыдущего раздела, в механике Ньютона существуют две абсолютные величины - пространство и время. Пространство неизменно и не связано с материей. Время - абсолютно и никак не связано ни с пространством, ни с материей. Эйнштейн отвергает эти положения, считая, что пространство и время органически связаны с материей и между собой. Тем самым задачей теории относительности становится определение законов четырехмерного пространства, где четвертая координата - время. Эйнштейн, приступая к разработке своей теории, принял в качестве исходных два положения: скорость света в вакууме неизменна и одинакова во всех системах, движущихся прямолинейно и равномерно друг относительно друга, и для всех инерциальных систем все законы природы одинаковы, а понятие абсолютной скорости теряет значение, так как нет возможности ее обнаружить.

Кроме того, он построил математическую теорию броуновского движения, разработал квантовую концепцию света, а за открытие фотоэффекта в 1921 г. ему была присуждена Нобелевская премия, дал физическое истолкование геометрии Н. Н. Лобачевского (1792-1856).

Говоря об открытии специальной теории относительности, нельзя не вспомнить нидерландского физика А. Лоренца (1853-1928), который в 1892 г. вывел уравнение (получившее название "преобразования Лоренца"), дающее возможность установить, что при переходе от одной инерциальной системе к другой могут изменяться значения времени и размеры движущегося тела в направлении скорости движения. А крупнейший французский математик и физик Анри Пуанкаре (1854-1912), который и ввел название "преобразование Лоренца", первым начал пользоваться термином "принцип относительности", независимо от Эйнштейна развил математическую сторону этого принципа и практически одновременно с ним показал неразрывную связь между энергией и массой.

Если в классической науке универсальным способом задания объектов теории были операции абстракции и непосредственной генерализации наличного эмпирического материала, то в неклассической введение объектов осуществляется на пути математизации, которая выступает основным индикатором идей в науке, приводящих к созданию новых ее разделов и теорий. Математизация ведет к повышению уровня абстракции теоретического знания, что влечет за собой потерю наглядности.

Переход от классической науки к неклассической характеризует та революционная ситуация, которая заключается во вхождении субъекта познания в "тело" знания в качестве его необходимого компонента. Изменяется понимание предмета знания: им стала теперь не реальность "в чистом виде", как она фиксируется живым созерцанием, а некоторый ее срез, заданный через призму принятых теоретических и операционных средств и способов ее освоения субъектом. Поскольку о многих характеристиках объекта невозможно говорить без учета средств их выявления, постольку порождается специфический объект науки, за пределами которого нет смысла искать подлинный его прототип. Выявление относительности объекта к научно-исследовательской деятельности повлекло за собой то, что наука стала ориентироваться не на изучение вещей как неизменных, а на изучение тех условий, попадая в которые они ведут себя тем или иным образом,

Так как исследователь фиксирует только конкретные результаты взаимодействия объекта с прибором, то это порождает некоторый "разброс" в конечных результатах исследования. Отсюда вытекает правомерность и равноправность различных видов описания объекта, построение его теоретических конструктов.

Научный факт перестал быть проверяющим. Теперь он реализуется в пакете с иными внутритеоретическими способами апробации знаний: принцип соответствия, выявление внутреннего и когерентного совершенства теории. Факт свидетельствует, что теоретическое предположение оправдано для определенных условий и может быть реализовано в некоторых ситуациях. Принцип экспериментальной проверяемости наделяется чертами фундаментальности, т.е. имеет место не "интуитивная очевидность", а "уместная адаптированность".

Концепция монофакторного эксперимента заменилась полифакторной: отказ от изоляции предмета от окружающего воздействия якобы для "чистоты рассмотрения", признание зависимости определенности свойств предмета от динамичности и комплексности его функционирования в познавательной ситуации, динамизация представлений о сущности объекта - переход от исследования равновесных структурных организаций к анализу неравновесных, нестационарных структур, ведущих себя как открытые системы. Это ориентирует исследователя на изучение объекта как средоточия комплексных обратных связей, возникающих как результирующая действий различных агентов и контрагентов.

На основе достижений физики развивается химия, особенно в области строения вещества. Развитие квантовой механики позволило установить природу химической связи, под последней понимается взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Создаются такие химические дисциплины, как физикохимия, стереохимия, химия комплексных соединений, начинается разработка методов органического синтеза.

В области биологии русским физиологом растений и микробиологом Д. И. Ивановским (1864-1920) был открыт вирус и положено начало вирусологии. Получает дальнейшее развитие генетика, в основе которой лежат законы Менделя и хромосомная теория наследственности американского биолога Т. Ханта (1866-1945). Хромосомы - структурные элементы ядра клетки, содержащие дезоксирибонуклеиновую кислоту (ДНК), которая является носителем наследственной информации организма. При делении ДНК точно воспроизводится, обеспечивая передачу наследственных признаков от поколения к поколению. Американский биохимик Дж. Уотсон (р. 1928) и английский биофизик Ф. Крик (р. 1916) в 1953 г. создали модель структуры ДНК, что положило начало молекулярной генетике. Датским биологом В. Йогансоном (1857-1927) было введено понятие "ген" - единица наследственного материала, отвечающая за передачу некоторого наследуемого признака.

Важнейшим событием развития генетики было открытие мутаций - внезапно возникающих изменений в наследственной системе организмов. Хотя явление мутаций было известно уже давно: в 1925 г. отечественный микробиолог Г. А. Натсон (1867- 1940) установил действие радиоизлучения на наследственную изменчивость у грибов, в 1927 г. американский генетик Г Д. Меллер (1890-1967) обнаружил мутагенное действие рентгеновских лучей на дрозофил. Систематическое изучение мутаций было предпринято голландским ученым Хуго де Фризом (1842-1935), установившим, что индуцированные мутации могут возникать в результате радиоактивного облучения организмов или под воздействием некоторых химических веществ.

В результате развития генетики в этот период было выяснено, что изменчивость растительного или животного организма может быть достигнуто двумя способами: либо непосредственным воздействием внешней среды без изменения наследственного аппарата организма, либо стимулированием мутаций, приводящих к изменениям наследственного аппарата (генов, хромосом).

Не менее значительные достижения были отмечены в области астрономии. Напомним, что под Вселенной (Метагалактикой) понимается доступная наблюдению и исследованию часть мира. Здесь существуют большие скопления (100- 200 млрд) звезд - галактики, в одну из которых - Млечный Путь - входит Солнечная система. Наша Галактика состоит из 150 млрд звезд (светящихся плазменных шаров), среди которых Солнце, галактические туманности, космические лучи, магнитные поля, излучения. Солнечная система находится далеко от ядра Галактики, на ее периферии, на расстоянии около 30 световых лет. Возраст Солнечной системы около 5 млрд лет. На основании "эффекта Доплера" (австрийский физик и астроном) было установлено, что Вселенная расширяется с очень высокой скоростью.

В 1922 г. отечественный математик и геофизик А. А. Фридман (1888-1925) нашел решение уравнений общей теории относительности для замкнутой нестационарной расширяющейся Вселенной, ставшее математическим фундаментом большинства современных космогонических теорий.

Астрономы и астрофизики пришли к выводу, что Вселенная находится в состоянии непрерывной эволюции. Звезды, которые образуются из газово-пылевой межзвездной среды, в основном из водорода и гелия, под действием сил гравитации различаются по "возрасту". Причем образование новых звезд происходит и сейчас.

Сжимаясь под действием гравитационных сил, звезда нагревается, внутри нее растет давление. При достижении оп

Наши рекомендации