Отношения между простыми высказываниями по истинности
Между высказываниями с одним и тем же субъектом и предикатом существуют следующие типы отношений: контрадикгорности (противоречия), контрарности (противности), субконтрарности (подпро-тивности) и подчинения. Тип отношения зависит от того, высказывания какого вида (А, Е, J, О) мы анализируем. Графическая схема отношений воспроизводится с помощью логического квадрата.Буквы в углах квадрата символизируют виды высказываний, а стороны и диагонали квадрата - возможные типы отношений.
Отношение контрадикторности существует между А и О, Е и J и характеризуется тем, что высказывания, находящиеся в отношении данного типа, не могут быть одновременно ни истинными, ни ложными, т. е. одно высказывание обязательно истинно, а другое - ложно.
Отношение контрарности характерно для высказываний А и Е. В данном случае высказывания не могут быть одновременно истинными, но могут быть одновременно ложными.
Отношения субконтрарности существуют между высказываниями J и О. В данном случае высказывания не могут быть одновременно ложными, но могут быть одновременно истинными.
Отношения подчинения существуют между А и J, E и О. Для данного типа отношений характерно, что истинность подчиняющегося высказывания (А или Е) обусловливает истинность подчиненного (J или О), но не наоборот. В то же время ложность подчиненного высказывания обусловливает ложность подчиняющего, но не наоборот.
Сложное высказывание
Логическое значение сложного высказывания в современной логике ставится в зависимость (является функцией) от логических значений простых высказываний. Последние рассматриваются в качестве исходных элементов логики высказываний, ее строительных блоков.
Сложные высказывания образуются из простых с помощью логических союзов (операций). Важнейшие из них - отрицание, конъюнкция, дизъюнкция (слабая и сильная), импликация, эквива-ленция. Принято называть сложное высказывание именем логического союза, с помощью которого оно образовано.
Отрицанием высказывания Р называется высказывание, обозначаемое выражением Р , которое истинно тогда и только тогда, когда Р ложно. Данное определение можно выразить с помощью табл. 3.2 (таблицы истинности), где «И» обозначает «истинно», а «Л» -
«ложно».
Таблица 3.2
р | Не-р |
и л | л и |
Конъюнкцией высказываний Р и Q называется высказывание, обозначаемое выражением Р л Q, которое истинно тогда и только тогда, когда Р и Q истинны (см. 3-й столбец табл. 3.3). Выражение Р л Q читается «Р и Q».
Таблица 3.3
р | Q | PÙQ | PvQ | PvQ | P→Q | P↔Q |
и л и л | и и л л | и л л л | И И И Л | Л и и л | И И Л И | И Л Л И |
Дизъюнкцией слабойвысказываний Р и Q называется высказывание, обозначаемое выражением PvQ, которое истинно, когда хотя бы одно из выражений Р и Q истинно (см. 4-й столбец табл. 3.3). Выражение PvQ читается «Рили Q».
Дизъюнкцией сильной высказываний Р и Q называется высказывание, обозначаемое выражением PvQ, которое истинно тогда и только тогда, когда только одно из выражений Р и Q истинно (см. 5-й столбец табл. 3.3). Выражение PvQ читается: «Либо Р, либо Q».
Импликацией высказываний Р и Q называется высказывание, обозначаемое выражением Р -» Q, которое ложно тогда и только тогда, когда Р истинно, a Q ложно (см. 6-й столбец табл. 3.3). Выражение читается: «Если Р, то Q», «Из Р следует Q» и т. д. При этом Р называется основанием, a Q - следствием импликации.
Эквиваленцией высказываний Р и Q называется высказывание, обозначаемое выражением Р ↔Q, которое истинно тогда и только тогда, когда логические значения Р и Q совпадают (см. 7-й столбец табл. 3.3). Выражение P↔Q читается: «Р тогда и только тогда, когда Q», «Р эквивалентно Q».
Названные операции могут применяться для действий как с простыми, так и со сложными высказываниями.
Зная логические значения исходных высказываний, можно составить таблицу истинности высказываний более сложной формы. Порядок выполнения операций при этом указывается скобками.