Некоторые современные парадоксы
парикмахера не может быть в деревне по той же причине, по какой в ней нет человека, который был бы старше самого себя или который родился бы до своего рождения.
Рассуждение о парикмахере может быть названо псевдопарадоксом. По своему ходу оно строго аналогично парадоксу Рассела и этим интересно. Но оно всетаки не является подлинным парадоксом.
Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге.
Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки на самих себя. Должен ли такой каталог включать ссылку на себя?
Нетрудно показать, что идея создания такого каталога неосуществима: он просто не может существовать, поскольку должен одновременно и включать ссылку на себя и не включать.
Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс.
Допустим, что в какой то момент был составлен каталог, скажем K1, включающий все отличные от него каталоги, не содержащие ссылки на себя. С созданием K1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что K1 не является ее решением. Он не упоминает один из таких каталогов — самого себя. Включив в K1 это упоминание о нем самом, получим каталог К2. В нем упоминается K1, но не сам К2. Добавив к К2 такое упоминание, получим K3, который опятьтаки неполон изза того, что не упоминает самого себя. И так далее без конца.
Интересный логический парадокс был открыт немецкими логиками К. Греллингом и Л. Нельсоном (парадокс Греллинга). Этот парадокс можно сформулировать очень просто.
Некоторые слова, обозначающие свойства, обладают тем самым свойством, которое они называют. Например, прилагательное «русское» само является русским, «многосложное» — само многосложное, а «пятислоговое» само имеет пять слогов. Такие слова, относящиеся к самим себе, называются «самозначными», или «аутологическими». Подобных слов не так много, в подавляющем большинстве прилагательные не обладают называемым ими свойством. «Новое» не является, конечно, новым, «горячее» — горячим, «однослоговое» — состоящим из одного слога, «английское» — английским. Слова, не имеющие свойства, обозначаемого ими, называются «инозначными», или «гетерологическими». Очевидно, что все прилагательные, обозначающие свойства, неприложимые к словам, будут гетерологическими.
Это разделение прилагательных на две группы кажется ясным и не вызывает возражений. Оно может быть распространено и на существительные: «слово» является словом, «существительное» — существительным, но «часы» — это не часы и «глагол» — не глагол.
Парадокс возникает, как только задается вопрос: к какой из двух групп относится само прилагательное «гетерологическое»? Если оно аутологическое, оно обладает обозначаемым им свойством и должно быть гетерологическим. Если же оно гетерологическое, оно не имеет называемого им свойства и должно быть поэтому аутологическим. Налицо парадокс.
Оказалось, что парадокс Греллинга был известен еще в средние века как антиномия выражения, не называющего самого себя.
Еще одна, внешне простая антиномия была указана в самом начале прошлого века Д. Берри.
Множество натуральных чисел бесконечно. Множество же тех имен этих чисел, которые имеются, например, в русском языке и содержат меньше чем, допустим, сто слов, является конечным. Это означает, что существуют такие натуральные числа, для которых в русском языке нет имен, состоящих менее чем из ста слов. Среди этих чисел есть, очевидно, наименьшее число. Его нельзя назвать посредством русского выражения, содержащего менее ста слов. Но выражение: «Наименьшее натуральное число, для которого не существует в русском языке его сложное имя, слагающееся менее чем из ста слов», является как раз именем этого числа! Это имя только что сформулировано в русском языке и содержит только девятнадцать слов. Очевидный парадокс: названным оказалось то число, для которого нет имени!
О чем говорят парадоксы
Никакого исчерпывающего перечня логических парадоксов не существует, да он и невозможен.
Рассмотренные парадоксы — это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем будут открыты и многие другие и даже совершенно новые их типы. Само понятие парадокса не является настолько определенным, чтобы удалось составить список хотя бы уже известных парадоксов.
Необходимым признаком логических парадоксов считается логический словарь. Парадоксы, относимые к логическим, должны быть сформулированы в логических терминах. Однако в логике нет четких критериев деления терминов на логические и внелогические. Логика, занимающаяся
правильностью рассуждений, стремится свести понятия, от которых зависит правильность практически применяемых выводов, к минимуму. Но этот минимум не предопределен однозначно. Кроме того, в логических терминах можно сформулировать и внелогические утверждения. Использует ли конкретный парадокс только чисто логические посылки, далеко не всегда удается определить однозначно.
Логические парадоксы не отделяются жестко от всех иных парадоксов, подобно тому как последние не отграничиваются ясно от всего не парадоксального и согласующегося с господствующими представлениями.
На первых порах изучения логических парадоксов казалось, что их можно выделить по нарушению некоторого, еще не исследованного правила логики. Особенно активно претендовал на роль такого правила введенный Расселом «принцип порочного круга». Этот принцип утверждает, что совокупность объектов не может содержать членов, определимых только посредством этой же совокупности.
Все парадоксы имеют одно общее свойство — самоприменимость, или циркулярность. В каждом из них объект, о котором идет речь, характеризуется посредством некоторой совокупности объектов, к которой он сам принадлежит. Если мы выделяем, например, человека как самого хитрого в классе, мы делаем это при помощи совокупности людей, к которой относится и данный человек (при помощи «его класса»). И если мы говорим: «Это высказывание ложно», мы характеризуем интересующее нас высказывание путем ссылки на включающую его совокупность всех ложных высказываний.
Во всех парадоксах имеет место самоприменимость, a значит, есть как бы движение по кругу, приводящее в конце концов к исходному пункту. Стремясь охарактеризовать интересующий нас объект, мы обращаемся к той совокупности объектов, которая включает его. Однако оказывается, что сама она для своей определенности нуждается в рассматриваемом объекте и не может быть ясным образом понята без него. В этом круге, возможно, и кроется источник парадоксов.
Ситуация осложняется, однако, тем, что такой круг имеется также во многих совершенно не парадоксальных рассуждениях. Циркулярным является огромное множество самых обычных, безвредных и вместе с тем удобных способов выражения. Такие примеры, как «самый большой из всех городов», «наименьшее из всех натуральных чисел», «один из электронов атома железа» и т. п., показывают, что далеко не всякий случай самоприменимости ведет к противоречию и что она широко используется не только в обычном языке, но и в языке науки.
Простая ссылка на использование самоприменимых понятий недостаточна, таким образом, для дискредитации парадоксов. Необходим еще какойто дополнительный критерий, отделяющий самоприменимость, ведущую к парадоксу, от всех иных ее случаев.
Было много предложений на этот счет, но удачного уточнения цир кулярности так и не было найдено. Невозможным оказалось охарактеризовать циркулярность таким образом, чтобы каждое циркулярное рассуждение вело к парадоксу, а каждый парадокс был итогом некоторого циркулярного рассуждения.
Попытка найти какойто специфический принцип логики, нарушение которого было бы отличительной особенностью всех логических парадоксов, ни к чему определенному не привела.
Несомненно полезной была бы какаято классификация парадоксов, подразделяющая их на типы и виды, группирующая одни парадоксы и противопоставляющая их другим. Однако и в этом деле ничего устойчивого не было достигнуто.
Не всегда парадокс выступает в таком прозрачном виде, как в случае, скажем, парадокса лжеца или парадокса Рассела. Иногда парадокс оказывается своеобразной формой постановки проблемы, относительно которой сложно даже решить, в чем именно последняя состоит. Размышление над такими проблемами обычно не приводит к какомуто определенному результату. Но и оно, несомненно, полезно в качестве логической тренировки.
Древнегреческий философ Горгий написал сочинение с интригующим названием «О несуществующем, или О природе».
Рассуждение Горгия о несуществовании природы разворачивается так. Сначала доказывается, что ничего не существует. Как только доказательство завершается, делается как бы шаг назад и предполагается, что нечто всетаки существует. Из этого допущения выводится, что существующее непостижимо для человека. Еще раз делается шаг назад и предполагается, вопреки, казалось бы, уже доказанному, что существующее всетаки постижимо. Из последнего допущения выводится, что постижимое невыразимо и необъяснимо для другого.
Какие именно проблемы хотел поставить Горгий? Однозначно на этот вопрос ответить невозможно. Очевидно, что рассуждение Горгия сталкивает нас с противоречиями и побуждает искать выход, чтобы избавиться от них. Но в чем именно заключаются проблемы, на которые указывают противоречия, и в каком направлении искать их решение, совершенно неясно.
О древнекитайском философе Хуэй Ши известно, что он был очень разносторонен, а его писания могли заполнить пять повозок. Он, в частности, утверждал: «То, что не обладает толщиной, не может быть накоплено, и все же его громада может простираться на тысячу ли. — Небо и земля одинаково низки; горы и болота одинаково ровны. — Солнце, только что достигшее зенита, уже находится в закате; вещь, только что родившаяся, уже умирает. — Южная сторона света не имеет предела и в то же время имеет предел. — Только сегодня отправившись в Юэ, туда я давно уже прибыл».
Сам Хуэй Ши считал свои изречения великими и раскрывающими самый потаенный смысл мира. Критики находили его учение противоречивым и путаным и заявляли, что «его пристрастные слова никогда не попадали в цель». В древнем философском трактате «Чжуанцзы», в частности, говорится: «Как жаль, что свой талант Хуэй Ши бездумно растрачивал на ненужное и не достиг истоков истины! Он гнался за внешней стороной тьмы вещей и не мог вернуться к их сокровенному началу. Это как бы пытаться убежать от эха, издавая звуки, или пытаться умчаться от
собственной тени. Разве это не печально?»
Сказано прекрасно, но вряд ли справедливо.
Впечатление путаницы и противоречивости в изречениях Хуэй Ши связано с внешней стороной дела, с тем, что он ставит свои проблемы в парадоксальной форме. В чем можно было бы его упрекнуть, так это в том, что выдвижение проблемы он почемуто считает и ее решением.
Как и в случае многих других парадоксов, трудно сказать с определенностью, какие именно конкретные вопросы стоят за афоризмами Хуэй Ши.
На какое интеллектуальное затруднение намекает, его заявление, что человек, только что отправившийся кудато, давно туда уже прибыл? Можно истолковать это так, что, прежде чем отбыть в определенное место, надо представить себе это место и тем самым как бы побывать там. Человек, направляющийся, подобно Хуэй Ши, в Юэ, постоянно держит в уме этот пункт и в течение всего времени продвижения к нему как бы пребывает в нем. Но если человек, только отправившийся в Юэ, давно уже там, то зачем ему вообще отправляться туда? Не вполне ясно, какая именно трудность скрывается за этим простым изречением.
Какие выводы для логики следует из существования парадоксов?
Прежде всего, наличие большого числа парадоксов говорит о силе логики как науки, а не о ее слабости, как это может показаться. Обнаружение парадоксов не случайно совпало с периодом наиболее интенсивного развития современной логики и наибольших ее успехов.
Первые парадоксы были открыты еще до возникновения логики как особой науки. Многие парадоксы были обнаружены в средние века. Позднее они оказались, однако, забытыми и были вновь открыты уже в прошлом веке.
Только современная логика извлекла из забвения саму проблему парадоксов, открыла или переоткрыла большинство конкретных логических парадоксов. Она показала далее, что способы мышления, традиционно исследовавшиеся логикой, совершенно недостаточны для устранения парадоксов, и указала принципиально новые приемы обращения с ними.
Парадоксы ставят важный вопрос: в чем, собственно, подводят нас некоторые обычные методы образования понятий и методы рассуждений? Ведь они представлялись совершенно естественными и убедительными, пока не выявилось, что они парадоксальны.
Парадоксами подрывается вера в то, что привычные приемы теорети ческого мышления сами по себе и без всякого особого контроля за ними обеспечивают надежное продвижение к истине.
Требуя радикальных изменений в излишне доверчивом подходе к теоретизированию, парадоксы представляют собой резкую критику логики в ее наивной, интуитивной форме. Они играют роль фактора, контролирующего и ставящего ограничения на пути конструирования дедуктивных систем логики. И эту их роль, можно сравнить с ролью эксперимента, проверяющего правильность гипотез в таких науках, как физика и химия, и заставляющего вносить в эти гипотезы изменения.
Парадокс в теории говорит о несовместимости допущений, лежащих в ее основе. Он выступает как своевременно обнаруженный симптом болезни, без которого ее можно было бы и проглядеть.
Разумеется, болезнь проявляется многообразно, и ее в конце концов удается раскрыть и без таких острых симптомов, как парадоксы. Скажем, основания теории множеств были бы проанализированы и уточнены, если бы даже никакие парадоксы в этой области не были обнаружены. Но не было бы той резкости и неотложности, с какой поставили проблему пересмотра теории множеств обнаруженные в ней парадоксы.
Парадоксам посвящена обширная литература, предложено большое число их объяснений. Но ни одно из этих объяснений не является общепризнанным, и полного согласия в вопросе о происхождении парадоксов и способах избавления от них нет.
Следует обратить внимание на одно важное различие. Устранение парадоксов и их разрешение — это вовсе не одно и то же. Устранить парадокс из некоторой теории — значит перестроить ее так, чтобы парадоксальное утверждение оказалось в ней недоказуемым. Каждый парадокс опирается на большое число определений и допущений. Его вывод в теории представляет собой некоторую цепочку рассуждений. Формально говоря, можно подвергнуть сомнению любое ее звено, исключить его и тем самым разорвать цепочку и устранить парадокс. Во многих работах так и поступают и этим oграничиваются.
Но это еще не разрешение парадокса. Мало найти способ, как его исключить, надо убедительно обосновать предлагаемое решение. Само сомнение в какомто шаге, ведущем к парадоксу, должно быть хорошо обосновано.
Прежде всего, решение об отказе от какихто логических средств, используемых при выводе парадоксального утверждения, должно быть увязано с нашими общими соображениями относительно природы логического доказательства и другими логическими интуициями. Если этого нет, устранение парадокса оказывается лишенным твердых и устойчивых оснований и вырождается в техническую по преимуществу задачу.
Кроме того, отказ от какогото допущения, даже если он и обеспечивает устранение некоторого конкретного парадокса, вовсе не гарантирует автоматически устранения всех парадоксов. Это говорит о том, что за парадоксами не следует «охотиться» поодиночке. Исключение одного из них всегда должно быть настолько обосновано, чтобы появилась определенная гарантия, что этим же шагом будут устранены и другие парадоксы.
И наконец, непродуманный и неосторожный отказ от слишком многих или слишком сильных допущений может привести просто к тому, что получится хотя и не содержащая парадоксов, но существенно более слабая теория, имеющая только частный интерес.
Г. Фреге, являющийся одним из основателей современной логики, имел очень скверный характер. Кроме того, он безоговорочно и даже жестоко критиковал современников. Возможно, поэтому его вклад в логику и обоснование математики долго не получал признания. И вот когда оно начало приходить, молодой английский логик Рассел написал ему, что в системе, опубликованной в первом томе его наиболее важной книги «Основные законы арифметики», возникает противоречие. Второй том этой книги был уже в печати, но Фреге добавил к нему специальное приложение, в котором изложил это противоречие (парадокс Рассела) и признал, что он не способен его устранить.
Последствия были для Фреге трагическими. Ему было тогда всего пятьдесят пять лет, но после испытанного потрясения он не опубликовал больше ни одной значительной работы по логике, хотя прожил еще более двадцати лет. Он не откликнулся даже на оживленную дискуссию, вызванную парадоксом Рассела, и никак не прореагировал на многочисленные предлагавшиеся решения этого парадокса.
Впечатление, произведенное на математиков и логиков только что открытыми парадоксами, хорошо выразил выдающийся математик Д. Гильберт: «… Состояние, в котором мы находимся сейчас в отношении парадоксов, на продолжительное время невыносимо. Подумайте: в математике — этом образце достоверности и истинности — образование понятий и ход умозаключений, как их всякий изучает, преподает и применяет, приводит к нелепости. Где же искать надежность и истинность, если даже само математическое мышление дает осечку?»
Фреге был типичным представителем логики конца XIX в., свободной от каких бы то ни было парадоксов, логики, уверенной в своих возможностях и претендующей на то, чтобы быть критерием строгости даже для математики. Парадоксы показали, что «абсолютная строгость», достигнутая якобы логикой, была не более чем иллюзией. Они бесспорно показали, что логика — в том интуитивном виде, какой она тогда имела, — нуждается в глубоком пересмотре.
Прошел целый век с тех пор, как началось оживленное обсуждение парадоксов. Предпринятая ревизия логики так и не привела, однако, к недвусмысленному их разрешению.
И вместе с тем такое состояние вряд ли кому кажется теперь невы носимым. С течением времени отношение к парадоксам стало более спокойным и даже более терпимым, чем в момент их обнаружения.
Дело не только в том, что парадоксы сделались чемто хотя и неприятным, но тем не менее привычным. И, разумеется, не в том, что с ними смирились. Они все еще остаются в центре внимания логиков, поиски их решений активно продолжаются.
Ситуация изменилась прежде всего в том отношении, что парадоксы оказались, так сказать, локализованными. Они обрели свое определенное, хотя и неспокойное место в широком спектре логических исследований.
Стало ясно, что абсолютная строгость, какой она рисовалась в конце прошлого века и даже иногда в начале нынешнего, — это в принципе недостижимый идеал.
Было осознано также, что нет однойединственной, стоящей особняком проблемы парадоксов. Проблемы, связанные с ними, относятся к разным типам и затрагивают, в сущности, все основные разделы логики. Обнаружение парадокса заставляет глубже проанализировать наши логические интуиции и заняться систематической переработкой основ науки логики. При этом стремление избежать парадоксов не является ни единственной, ни даже, пожалуй, главной задачей. Они являются хотя и важным, но только поводом для размышления над центральными темами логики. Продолжая сравнение парадоксов с особо отчетливыми симптомами болезни, можно сказать, что стремление немедленно исключить парадоксы было бы подобно желанию снять такие симптомы, не особенно заботясь о самой болезни. Требуется не просто разрешение парадоксов, необходимо их объяснение, углубляющее наши представления о логических закономерностях мышления.
Размышление над парадоксами является, без сомнения, одним из лучших испытаний наших логических способностей и одним из наиболее эффективных средств их тренировки.
Знакомство с парадоксами, проникновение в суть стоящих за ними проблем — непростое дело. Оно требует максимальной сосредоточенности и напряженного вдумывания в несколько, казалось бы, простых утверждений. Только при этом условии парадокс может быть понят. Трудно претендовать на изобретение новых решений логических парадоксов, но уже ознакомление с предлагавшимися их решениями является хорошей школой практической логики.
ИСКУССТВО УБЕЖДАТЬ
Глава