Интермеццо: теория хаоса и «наука постмодерна»
Придет день, когда путем многовекового изучения, вещи до сих пор скрытые предъявят себя с очевидностью и последующие поколения удивятся, что столь ясные истины ускользали от нас.
Сенека, О движении комет, цитируется Лапласом (1986 [1825], с. 34)
В дискурсе постмодерна часто встречается идея, что все более или менее современные научные открытия не только преобразили наше представление о мире, но коренным образом изменили и философию и эпистемологию, и определенным образом поменялась природа научного знания140. Среди наиболее часто приводимых примеров для подкрепления этого тезиса — квантовая механика, теорема Геделя и теория хаоса. Встречаются также идеи вектора времени, самоорганизации, геометрии фракталов, теория Большого Взрыва и другие теории.
Мы думаем, что речь идет здесь в основном о заблуждениях, которые, однако, не столь очевидны как те, что мы находили у Лакана, Иригарэй или Делеза. Понадобилось бы несколько книг, чтобы разобрать их все и оценить те зерна истины, которые часто находятся в основании этих недоразумений. Мы сделаем лишь набросок такой критики, ограничивая себя двумя примерами: «наукой постмодерна» с точки зрения Лиотара и теорией хаоса141.
Ставшая уже классической формулировка идеи о глубокой концептуальной революции находится в главе, посвященной «науке постмодерна как поиску нестабильности» в книге Жана-Франсуа Лиотара «Ситуация постмодерна» 142. В этой главе Лиотар обозревает некоторые аспекты развития науки двадцатого века, которые, по его мнению, обозначают переход к новой науке «постмодерна». Рассмотрим примеры, которые приводит Лиотар.
После краткого косвенного упоминания теоремы Геделя он берется за проблему предела предсказуемости в атомной и квантовой физике. С одной стороны, он замечает, что невозможно знать практически, например, местоположение всех молекул какого-то газа. Но это известный факт и он вот уже с конца девятнадцатого века составляет основу физической статистики. С другой стороны, когда Лиотар рассуждает о проблеме индетерминизма квантовой механики, он иллюстрирует это примером из доквантовой физики: понятием плотности (частным от деления массы на объем) газа. Ссылаясь на текст о газе физика Жана Перина143, Лиотар отмечает, что плотность зависит от шкалы, избранной для наблюдения: например, если мы возьмем шар объемом молекулы, то плотность будет изменяться от нуля до предельной величины, так как молекула газа или находится в шаре, или нет. Но ведь это банальность: плотность — макроскопическая переменная и имеет смысл только в опыте с большим числом молекул. Но Лиотар делает из этого радикальные выводы:
Знание, касающиеся плотности воздуха, разложилось, таким образом, на множество абсолютно несовместимых друг с другом высказываний и совместимых лишь относительно шкалы, избранной тем, кто формулирует высказывание. (Лиотар 1979, с. 92)
В этом замечании чувствуется ничем не оправданный субъективизм. Истина высказывания с очевидностью зависит от смысла составляющих его слов. И когда эти слова (как, например, плотность) имеют смысл, который в свою очередь зависит от шкалы измерений, то истина высказывания тоже будет зависеть от этого. Высказывания о плотности воздуха, если они тщательно сформулированы, вовсе не несовместимы. Затем Лиотар приводит геометрию фракталов, которая изучает неправильные объекты, такие, как снежинки и броуновское движение. Эти объекты, в определенном — техническом — смысле слова, не могут иметь измерение в целых числах144. Он перечисляет также теорию катастроф, направления в математике, которое занимается особенностями некоторых поверхностей (и других сходных объектов). Эти две математические теории, действительно, интересны и имеют ряд приложений в естественных науках, в частности, в физике145. Как все передовые направления в науке, они предлагают новый инструментарий и привлекают внимание к новым проблемам. Но они вовсе не ставят под сомнение традиционную эпистемологию.
В конечном счете, Лиотар не дает никакого весомого доказательства своим философским заключениям.
Идея, к которой подталкивают эти открытия (и многие другие), состоит в том, что преимущество непрерывно дифференцируемой функции146 как парадигмы познания и прогнозирования постепенно исчезает. Наука постмодерна, интересуясь неопределенностью, пределами допустимости, квантами, конфликтами неполноты, «фракталами», катастрофами, парадоксами прагматики, — она создает теорию собственной — разрывной, катастрофичной, не дифференцируемой147, парадоксальной — эволюции. Она изменяет смысл слова «знание» и говорит, как это изменение может происходить. Она производит не известное, а неизвестное. И она предполагает такую модель обоснования (легитимации), которая связана вовсе не с эффективной производительностью, а скорее с различием, понятым как паралогия. (Лиотар 1979, с. 97)
Внимательно изучим этот фрагмент, поскольку он часто цитируется148. Лиотар смешивает по крайней мере шесть различных специальных областей математики и физики, на самом деле достаточно далеких друг от друга. Более того, он смешивает введение не дифференцируемых (разрывных) функций в научное моделирование с так называемой «прерывистой», то есть парадоксальной, эволюцией самой науки. Теории, перечисленные Лиотаром, разумеется, производят новое знание, не изменяя смысла этого слова149. A fortiori они производят известное, а не неизвестное (если не понимать буквально, что они открывают нечто новое). А «модель легитимации» остается столкновением теории и практики, а не «различием, понятым как паралогия» (если это определение вообще имеет какой-то смысл).
Но вернемся к теории хаоса150. Мы рассмотрим три типа заблуждений: те, что относятся к философскому значению теории, те, что связаны с метафорическим употреблением слова «линейный» (и «нелинейный») и те, что касаются ее скороспелого использования и распространения.
О чем идет речь в теории хаоса? Есть большое число физических феноменов, подчиняющихся детерминистским законам, и потому теоретически предсказуемых, которые тем не менее на практике ведут себя непредвиденным образом из-за их «чувствительности к исходным условиям». Это означает, что две системы, которые управляются одними и теми же законами, в какой-то момент будут находиться в сходном (но не идентичном) состоянии, а через относительно короткий момент времени станут сильно различаться по своему состоянию. Этот феномен можно представить себе, вообразив, что взмах крыла бабочки сегодня на Мадагаскаре вызовет во Флориде через три недели ураган. Разумеется, бабочка как таковая ничего особенного не делает. Но если сравним две системы, представляющие земную атмосферу с взмахом крыла бабочки и без него, то окажется, что результат через три недели будет различным (будет ураган или его не будет). Практическое следствие состоит в том, что, по всей видимости, нельзя предсказать, что будет через несколько недель151. В самом деле, придется принять в расчет столь большое количество данных, и с такой точностью, что даже самые мощные компьютерные системы, какие только можно себе вообразить, не справятся с такой задачей.
Чтобы быть более точным, возьмем систему, исходное состояние которой мы знаем недостаточно хорошо (как это всегда бывает на практике); очевидно, что эта неточность отразится на качестве предсказаний, которые мы можем сделать в отношении ее дальнейшего состояния.
Со временем, как правило, неточность предсказаний будет возрастать. Но характер возрастания неточности в разных системах различный: в некоторых системах она возрастает медленнее, в других — быстрее152.
Чтобы объяснить эту идею, представим себе, что мы хотим сделать наше предсказание более точным и нас интересует, на какой интервал времени оно рассчитано. Предположим также, что техническое усовершенствование позволит по крайней мере наполовину восполнить нашу неточность при описании исходного состояния. Для системы первого типа это улучшение позволит увеличить вдвое время, на которое мы сможем сделать наши предсказания с желаемой точностью. Но для системы второго типа такое уточнение данных позволит увеличить время лишь на какую-то определенную величину: например, дополнительно на одну секунду, или дополнительно на одну неделю (это зависит от ситуации). Упрощая, первые системы можно назвать «не хаотичными», а вторые — «хаотичными» (или подверженными «чувствительности к исходным условиям»). Хаотичные системы, таким образом, характеризуются их ограниченной предсказуемостью, поскольку даже заметное уточнение исходных данных не влечет за собой соответствующего увеличения времени, на которое распространяются наши предсказания153.
Может быть пример с земной атмосферой, которую трудно предсказать, не столь впечатляющий. Впечатляет то, что система, которая может быть описана с помощью небольшого числа переменных, например, двое одинаково выставленных часов, система, которая бы подчинялась детерминистским уравнениям, могла иметь очень сложное поведение и чувствительность к исходным условиям.
Тем не менее следует избегать поспешных философских заключений. Например, заявлений о том, что хаос обозначает границы науки. Ведь мы не оказываемся в тупике и не упираемся в плакат с надписью «дальнейшее движение запрещено». Теория хаоса открывает множество возможностей и обнаруживает массу новых объектов154. С другой стороны, всегда было известно, или допускалось, что наука не может «все» предсказать и «все» просчитать. Узнать, что своеобразный объект (время — через несколько недель) неизбежно ускользает от наших предсказаний, — конечно неприятно, но это не остановит развитие науки. К примеру, в девятнадцатом веке было прекрасно известно, что невозможно знать все состояния всех молекул газа. Но тем не менее удалось выработать методы статистической физики, которые позволяют изучить многие характеристики сложных систем с большим числом составляющих, таких как газ. Сходные статистические методы в наши дни используются для изучения феноменов хаоса. И, в конце концов, цель науки — не только предсказывать, но и понимать.
Второе неверное заключение касается Лапласа и детерминизма. Подчеркнем, что в этом старом споре всегда было принципиально важно различить детерминизм и предсказуемость. Детерминизм относится к самой природе (не зависящей от нас), в то время как предсказуемость относится отчасти к природе, а отчасти к нам самим. Чтобы убедиться в этом, представим себе абсолютно предсказуемый феномен, движение часов, например, — но помещенный в недоступное для нас место (например, на вершину горы). Движение становится для нас непредсказуемым, потому что у нас нет никакой возможности узнать исходные условия. Но было бы нелепо говорить о том, что оно перестало быть детерминированным. Или возьмем часы: при условии, что нет внешней действующей силы, их движение является детерминированным, а не хаотичным. Когда к ним применяют постоянно действующую силу, их движение может стать хаотичным и трудно предсказуемым; но перестанет ли оно от этого быть детерминированным?
Концепция Лапласа тоже, заметим, часто понимается неверно. Когда он вводит универсальный детерминизм155, он сразу же оговаривается, что мы всегда будем «бесконечно далеки» от этого воображаемого «разума» и его идеального знания положения существ, составляющих природу, то есть, говоря современным языком, точных исходных условий всех частиц. Он ясно разделяет природу и наше знание о ней. Более того, Лаплас высказывает этот принцип в самом начале своей работы о вероятности. Что означает для него вероятность? Это ничто иное, как способ судить о неоднозначных ситуациях. Вообразить, что он надеялся, это он-то, прийти к полному знанию, к универсальной предсказуемости — означает совершенно перевернуть смысл его текста. Потому что он считал целью своей работы как раз объяснить, каким образом действовать в ситуации отсутствия такого знания, как, среди прочих, в случае статистической физики.
В последние три десятка лет в математической теории хаоса много открытий, но предположение, согласно которому некоторые физические системы могут быть чувствительны к исходным условиям вовсе не является новым. Вот что говорил Максвелл в 1877 году после провозглашения принципа детерминизма («одна и та же причина порождает всегда одно и то же следствие»):
Есть другое предположение, которое не следует путать с предыдущим, оно гласит: «Сходные причины производят сходные следствия». Это верно, только если незначительные изменения исходных условий повлекут за собой лишь незначительные изменения конечного состояния системы. Это положение проверено на большом числе физических феноменов; но есть другие случаи, когда незначительные изменения исходных условий влекут за собой значительные изменения в конечном состоянии системы. (Максвелл 1952 [1877], с. 13)
А вот текст Пуанкаре 1909 года, не потерявший и сегодня своей актуальности, о метеорологических прогнозах:
Почему метеорологам так трудно точно предсказывать погоду? Почему ливни и бури приходят, как нам кажется, случайно, и в связи с этим множество людей считают вполне естественным молиться о том, чтобы шел дождь или светило солнце, при том, что они же считали бы нелепым молиться о солнечном затмении? Мы видим, что великие потрясения происходят как правило там, где атмосфера находится в неустойчивом равновесии, что циклон должен появиться, но где именно? Невозможно сказать: какое-то изменение в одну десятую градуса — и циклон возникает здесь, а не там и обрушивается на те области, что должны были быть защищены. Если бы знать эту десятую градуса, можно было бы сказать об этом заранее, но наблюдения не бывают ни достаточно тщательными, ни достаточно точными, и поэтому все кажется случайным стечением обстоятельств. (Пуанкаре 1909, с. 69)
Перейдем к заблуждениям, связанным с употреблением слова «линейный». Прежде всего надо подчеркнуть, что в математике существует два значения слова «линейный», которые не надо путать. С одной стороны, говорят о линейной функции (или уравнении ): например, функции f(x) = 2x и f(x) = -17x являются линейными, а f(x) = x2 и f(x) = sin x не являются линейными. В терминах математического моделирования, линейное уравнение описывает (немного упрощая) положение, где «следствие прямо пропорционально причине»156. С другой стороны, говорят о линейной порядке 157: это означает, что множество задается таким образом, что для каждой пары элементова и b, верно или а = b, или а > b. Таким образом, существует естественный линейный порядок натуральных чисел, в то время как его не существует у комплексных чисел. Но постмодернистские авторы (прежде всего англо-саксонские) добавили третье значение слова — оно связано со вторым, но они сами путают его с первым — линейное мышление . Мы не найдем точного определения, но в целом смысл ясен: речь идет о логичном и рациональном мышлении Просвещения и так называемой «классической» науки (обвиненном часто в крайнем редукционизме и нумеризации). Этому устаревшему способу мышления противопоставляется «нелинейное мышление» постмодерна. Его точное содержание тоже нигде ясно не объясняется, но речь идет, в противоположность рассудку, о мышлении, основывающемся на интуиции и субъективном восприятии158. Многие авторы, не будучи учеными, считают, что так называемая «наука постмодерна» — и в особенности теория хаоса — обосновывает и подкрепляет это новое «нелинейное мышление». На самом деле речь идет лишь о путанице между тремя значениями слова «линейный»159.
Из-за этих злоупотреблений мы часто встречаем у постмодернистских авторов ссылку на теорию хаоса как на революционную составляющую против ньютоновской механики — обозначенной как «линейная» — или на квантовую механику как на пример нелинейной теории160. На самом деле так называемое ньютоновское «линейное мышление» замечательно использует нелинейные уравнения; а также многие примеры из теории хаоса взяты из ньютоновской механики, и изучение хаоса представляет собой своеобразное возрождение ньютоновской механики как предмета научного исследования. А фундаментальное уравнение квантовой механики Шредингера — пример линейного уравнения; и квантовая механика, которая часто приводится в качестве примера «науки постмодерна» — на самом деле является единственным известным (по крайней мере, из известных нам) примером не просто линейного приближения к более фундаментальной нелинейной теории, а последовательно линейной теорией.
Однако чаще всего речь идет о неверном понимании связи между линейностью, хаосом и существованием определенного решения уравнения. Нелинейные уравнения, как правило, труднее для разрешения, чем линейные, но это не всегда: существуют очень трудные проблемы решения линейных уравнений так же, как очень простые решения для нелинейных. Например, уравнения Ньютона для решения проблемы Кеплера с двумя небесными телами (Солнцем и одной планетой) — нелинейные, однако решаются однозначным образом. Однако, чтобы говорить о хаосе, необходимо , чтобы уравнение было нелинейным и (мы немного упрощаем) имелось бы не единственное решение, но эти два условия не являются достаточными — ни по отдельности, ни вместе — для того, чтобы говорить о хаосе. То есть, в противоположность распространенному мнению, нелинейная система не обязательно является хаотичной.
Трудностей и заблуждений становится больше, когда дело касается применения математической теории хаоса к конкретным ситуациям в физике, биологии или социальных науках161. В самом деле, следует иметь представление о соответствующих переменных и типе их эволюции; к тому же трудно бывает найти математическую модель одновременно достаточно простую для исследования и способную адекватно описать выбранный объект. Впрочем эти проблемы встают перед математической теорией каждый раз, когда она применяется к реальности (достаточно вспомнить теорию катастроф).
Часто можно наблюдать совершенно фантастические попытки так называемого «применения» хаоса, например, к анализу прибыли предприятия или к литературе. Иногда вместо хорошо разработанной математически теории хаоса имеют ввиду только разрабатываемые теории сложности и самоорганизации, что еще больше запутывает ситуацию.
Еще одно заблуждение возникает, когда смешивается математическая теория хаоса с народной мудростью суждений о значительных последствиях незначительных причин типа «если бы нос Клеопатры был короче…». Не прекращаются рассуждения о хаосе «относящемся» к истории или к обществу. Но когда говорят об обществе или истории, то имеют дело (скорее всего) с системами с большим числом переменных, для которых, и это главное, невозможно составить уравнения. Так что рассуждения о хаосе применительно к таким системам не добавляют к народной мудрости ничего нового162.
Последнее заблуждение происходит из-за вольной или невольной путаницы различных значений слова «хаос», вызывающий множество ассоциаций: его специального значения в математической теории нелинейных динамических систем — где оно близко по смыслу «чувствительности к исходным условиям» — и того широкого смысла, который придается ему в социологии, политике, истории и даже теологии — где оно часто оказывается синонимом беспорядка. Как мы увидим, Бодрийар и Делез-Гваттари используют эту путаницу (или попадают в нее) самым бессовестным образом.
Жан Бодрийар
Жан Бодрийар занимается социологической работой, которая подвергает испытанию и разрушению единство существующих теорий. С помощью насмешки, а также детальной точности он освобождает существующие описания общества от спокойной уверенности и наполняет их юмором.
Монд (1984b, с. 95, выделено нами)
Социолог и философ Жан Бодрийар известен своими размышлениями над проблемами реальности, видимости и иллюзии. Здесь мы обратим внимание на мало изученный аспект его работы, а именно частое употребление им научной терминологии.
В некоторых случаях речь явно идет о метафорах. Бодрийар писал, например, о войне в Персидском заливе:
Самое удивительное — то, что две гипотезы: апокалипсис реального времени и чистой войны, и победа виртуального над реальным — имеют место в одно и то же время, в одном и том же пространстве-времени, и неумолимо следуют друг за другом. Это свидетельство того, что пространство события стало гиперпространством с многократным преломлением, что пространство войны окончательно стало неевклидовым. (Бодрийар, 1991, стр. 49, курсив в тексте)
Создается впечатление, что существует традиция использования математических понятий вне их контекста. У Лакана это торы и мнимые числа, у Кристевой — бесконечные множества, в данном же случае это неевклидовы пространства (употребляемые в общей теории относительности)163. Что все это могло бы означать? Впрочем, а что представляло бы собой евклидово пространство войны? И наконец следует подчеркнуть, что понятие «гиперпространство с многократным преломлением» не существует ни в математике, ни в физике; это словосочетание — бодрийаровское — чистая выдумка.
Статьи Бодрийара переполнены подобными физическими метафорами, например:
В евклидовом историческом пространстве, самый краткий путь от одной точки до другой, это прямая, прямая Прогресса и Демократии. Но это верно лишь для линейного пространства Просвещения164. В нашем, неевклидовом, пространстве конца века, один неблагоприятный изгиб необратимо изменяет все траектории. Он, без сомнения, связан со сферичностью времени (она становится видимой на горизонте в конце века как сферичность земли — на горизонте в конце дня), или в тонкой дисторсии (искажении) поля притяжения. […]
С помощью этого опрокидывания истории в бесконечность, с помощью этого гиперболического изгиба, сам век ускользает от своего конца. (Бодрийар 1992, с. 23–24)
Именно ему, без сомнения, мы обязаны этим забавным физическим опытом: впечатлением, что коллективные или индивидуальные события затягиваются дырой памяти. Эта утрата, несомненно, вызвана тем самым движением обратимости, тем самым параболическим изгибом исторического пространства. (Бодрийар 1992, стр. 36)
Но физика в целом у Бодрийяра не метафорична. В его собственно философских работах физика берется (как нам кажется) буквально, как, например, в эссе «Неизбежное, или обратимая необратимость», посвященном теме случайности:
Фундаментальными являются эта обратимость причинного порядка, эта обратимость следствия по отношению к причине, эта прецессия и эта победа следствия над причиной. […]
Это то, что происходит с наукой, когда она не останавливается на том, чтобы подвергнуть сомнению в детерминистский принцип причинности (вот она, первая революция). Она, по ту сторону принципа неопределенности, который оказывается еще и гиперрациональностью, предчувствует: случайность — это колебание законов, что само по себе уже удивительно. И еще она, на пределе физических и биологических возможностей своего опыта, предчувствует, что существует не только колебание, неопределенность, но и возможная обратимость физических законов. Именно это и составляет абсолютную загадку: не некая сверхформула или метауравнение вселенной (это и было представлено теорией относительности), но идея того, что всякий закон может обратить сам себя (не только обратить частицу в античастицу, а материю в антиматерию, но и сами законы). Эта обратимость, гипотеза о которой всегда высказывалась в великих метафизических теориях — фундаментальное правило игры видимостей, метаморфозы видимостей, против необратимого порядка времени, закона и смысла. Но любопытно наблюдать, как приходит наука к тем же, настолько противоречащим ее собственной логике и ее собственному развитию гипотезам. (Бодрийяр, 1983, стр. 232–234, курсив в тексте)
Сложно угадать, что Бодрийар подразумевает под выражением «обратить закон». Действительно, физика говорит об обратимости законов, используя данное выражение, чтобы кратко указать на их неизменность по отношению к обратимости времени165. Но это свойство хорошо известно уже в детерминистской и причинной теории — ньютоновской механике, она не имеет ничего общего с неопределенностью и вовсе не находится на «пределе физических возможностей» науки. (Напротив, новизну представляет не -обратимость законов «слабых взаимодействий», открытая в 1964 году). В любом случае, обратимость законов не имеет отношения к пресловутой «обратимости причинного порядка». Наконец, научные измышления (или разглагольствования) Бодрийара приводят его к необоснованным философским утверждениям: он никак не аргументирует свою идею, согласно которой наука приходит к гипотезам, «противоречащим ее собственной логике».
Эта мысль воспроизведена в эссе, озаглавленном Неустойчивость и устойчивость по экспоненте:
Это скорее проблема дискурса о конце (в частности, о конце истории), чем проблема необходимости говорить об этом, находясь в то же время далеко от конца, и невозможности закончить. Этот парадокс — следствие того, что в нелинейном пространстве, в неевклидовом пространстве истории конец неуловим. Конец, действительно, может быть определен только в рамках логического порядка причинности и непрерывности. Таким образом, события, из-за своего искусственного производства, запрограммированного срока действия или предвосхищения своих следствий, если не принимать в расчет их преобразование в средствах массовой информации, сами аннулируют отношение причины к следствию, и, следовательно, всю историческую непрерывность.
Это искажение (дисторсия) следствий и причин, эта загадочная автономность следствий, эта обратимость следствия по отношению к причине, порождающей беспорядок, или хаотический порядок (это в точности наша сегодняшняя ситуация: ситуация обратимости информации о реальном, порождающей событийный беспорядок и нелепость медиа-следствий), — все это не существует без привлечения теории Хаоса и диспропорции между взмахом крыльев мотылька и ураганом, который он вызвал на другом краю света. И без привлечения парадоксальной идеи Жака Бенвиниста о памяти воды. […]
Может быть, следует и историю рассматривать как хаотическое образование, где ускорение кладет конец линейности, и где турбулентные потоки, вызванные ускорением, окончательно отдаляют историю от ее конца точно так же, как они отдаляют следствия от их причин. (Бодрийар 1992, стр. 155–156)
Во-первых, теория хаоса ни коим образом не разрушает отношение между следствием и причиной. Нас охватывают серьезные сомнения в том, что, действие, произведенное в настоящем может затрагивать, даже в межличностных отношениях, прошедшее событие! Во-вторых, теория хаоса не имеет ничего общего с гипотезой Бенвениста, касающейся памяти воды166. И, наконец, последняя фраза, хотя и построена при помощи научной терминологии, лишена всякого смысла. Текст продолжается в том же духе:
Мы не достигнем своего предназначения, даже если это Страшный Суд, так как мы отделены от него гиперпространством с неустойчивым преломлением. Обратимость истории могла бы очень хорошо объяснить самое себя как турбулентный поток подобного типа, вызванный стремительностью событий, которая изменяет их ход и сбивает их траекторию. Это одна из версий теории Хаоса, а именно неустойчивости по экспоненте и ее неконторолируемых следствий. Эта катастрофическая сингулярность прерывает линейный или диалектический ход истории и сводит на нет «конец» истории. […]
Но версия неустойчивости по экспоненте не единственная, другая — это устойчивость по экспоненте. Она определяет то состояние, когда, отправляясь из любой точки, всегда заканчивают путь там, где начали.
Все ведет, независимо от исходных условий, индивидуальных особенностей, к еще одной странной точке притяжения — к точке Нуля167. […]
Эти две гипотезы — неустойчивости и устойчивости по экспоненте — хотя и являются несовместимыми, одновременно приемлемы. К тому же, наша система их сочетает в своем нормальном, нормально катастрофическом состоянии. Действительно, она сочетает инфляцию, скачкообразное ускорение, головокружительную изменчивость, неожиданность последствий, избыток чувств и информации, — с растущей (по экспоненте) тенденцией к всеобщей энтропии. Наши системы, таким образом, хаотичны дважды: они функционируют одновременно в неустойчивости и устойчивости по экспоненте.
Таким образом, конца нет, потому что мы находимся в состоянии избыточности конца: трансконечное — в запредельности конечностей: трансконечность. […]
Теперь нет конца у наших систем, сложных, с метастазами, зараженных, обреченных на единственный показатель экспоненты (неустойчивое или устойчивое), на бесконечную фрактальную непредсказуемость и неопределенность. Обреченные на ускоренный метаболизм, распространение вовне метастазами, они истощают сами себя и не имеют более предназначения, конца, альтернативы, неизбежности. Они обречены на эпидемии, на бесконечный рост фрактала, — но не на обратимость или исключение неизбежности. Мы можем распознавать лишь знаки катастрофы, мы более не можем распознавать знаки судьбы. (Кстати, занимается ли теория Хаоса противоположным явлением, тоже совершенно необыкновенным — гипочувствительностью к исходным условиям, обратным экспонированием следствий по отношению к причинам — потенциальными ураганами, которые заканчиваются взмахом крыльев мотылька?) (Бодрийар 1992, с. 156–160, выделено автором)
Читатель заметит высокую плотность научных и псевдонаучных слов168, вставленных в совершенно бессмысленные предложения. Тем не менее следует сказать, что эти тексты не типичны для Бодрийара, так как в них он ссылается (правда, неопределенным и путаным образом) на уже более или менее определенные научные идеи. Чаще можно прочитать следующие пассажи:
Нет топологии лучше, чем топология Мебиуса для того, чтобы указать на смежность близкого и далекого, внутреннего и внешнего, объекта и субъекта на одной спирали, где также накладываются друг на друга экран наших компьютеров и мысленный экран нашего собственного мозга. С точки зрения такой модели, информация и коммуникация всегда возвращаются к самим себе в кровосмесительном обращении, в поверхностной неразличенности субъекта и объекта, внешнего и внутреннего, вопроса и ответа, события и изображения и т. д. — это можно представить себе лишь как петлю, которая моделирует математическую фигуру бесконечного. (Бодрийар 1992, с. 62–63)
Как заметили Гросс и Левитт (1994, с. 80), «это столь же напыщенно, сколь и бессмысленно».
Подводя итог, в работах Бодрийара содержится большое число научных терминов, которые использованы без должного внимания к их значениям и помещены в явно не подходящий им контекст169. Воспринимаются ли они как метафоры, или нет, они могут лишь создать видимость глубины банальным рассуждениям о социологии и истории. Кроме того, научная терминология смешивается со столь же легко используемой ненаучной терминологией. В конечном счете, возникает вопрос, что останется от мысли Бодрийара, если стереть весь покрывающий ее словесный глянец.