ПРЕВРАЩЕНИЕ (лат. Obversio) в традиционной логике

— вид непосредственного умозаключения, характеризующегося тем, что в исходных суждениях вида A, Е, I, О (см.: Суждение) предикат Р заменяется на не-Р (т. е. на его дополнение), и наоборот, и при этом качество суждения изменяется (утвердительное суждение преобразуется в отрицательное, и наоборот), а его общность (т. е. количество суждения) остается прежней. Так, из истинного суждения вида «Все S суть Р» путем его П. можно получить истинное суждение вида «Ни одно S не есть не-Р» (ср.: «Все тигры — хищные животные» и «Ни один тигр не является не-хищным животным»). Из истинного суждения вида «Ни одно S не есть Р» можно путем П. получить истинное суждение вида «Все S суть не-Р» (ср.: «Ни один кит не есть рыба» и «Все киты суть не-рыбы»). Из истинного суждения вида «Некоторые S суть Р» путем П. можно получить истинное суждение вида «Некоторые S не суть не-Р» (ср.: «Некоторые металлы являются жидкими» и «Некоторые металлы не являются не-жидкими»). Из истинного суждения вида «Некоторые S не суть Р» путем П. можно получить истинное суждение вида «Некоторые S есть не-Р» (ср.: «Некоторые учащиеся не являются отличниками» и «Некоторые учащиеся являются не-отличниками»).

«ПРЕДВОСХИЩЕНИЕ ОСНОВАНИЯ» (лат. petitio principii)

- ошибка логическая в доказательстве, заключающаяся в том, что в качестве аргумента (основания), обосновывающего тезис, приводится положение, которое хотя и не является заведомо ложным, однако нуждается в доказательстве. Так, социологическое учение англ. экономиста и священника Т. Р. Мальтуса (1766-1834) опиралось на два основных аргумента: население растет в геометрической прогрессии, в то время как средства к существованию возрастают лишь в арифметической прогрессии. Оба эти аргумента были недоказанными, поэтому Мальтус совершал ошибку П. о. Ошибка стала явной, когда было показано, что население растет гораздо медленнее, чем предполагал Мальтус, а объем средств к существованию, напротив, возрастает намного быстрее.

ПРЕДИКАТ (от лат. praedicatum - сказанное)

- языковое выражение, обозначающее какое-то свойство или отношение. П., указывающий на свойство отдельного предмета (напр., «быть зеленым»), называется одноместным. П., обозначающий отношение, называется двухместным, трехместным и т. д., в зависимости от числа членов данного отношения («любит», «находится между» и т. д.).

В традиционной логике П. понимался только как свойство, предикативная связь означала, что предмету (субъекту) присущ определенный признак. Это ограничение существенно ослабляло выразительные возможности языка логики. В частности, в системах аксиом математических теорий всегда имеются аксиомы, невыразимые посредством одноместных П.

В современной логике предикация рассматривается как частный случай функциональной зависимости. П. называются функции, значениями которых служат высказывания. Напр., выражение «... есть зеленый» (или «х есть зеленый») является функцией от одной переменной, «... любит...» («х любит у») — функция от двух переменных, «...находится между... и...» («х находится между у и z») ~ функция от трех переменных и т. д. Эти выражения превращаются в высказывания при соответствующей подстановке имен вместо переменных или при связывании переменных кванторами (см.: Логика предикатов).

ПРЕДПОЧТЕНИЙ ЛОГИКА

- логика сравнительных оценок, выражаемых при помощи понятий «лучше», «хуже», «равноценно», называемых предпочтениями.

Логическое исследование сравнительных оценок началось в конце 40-х годов этого века в связи с попытками установить формальные критерии разумного (рационального) предпочтения. В качестве самостоятельного раздела модальной логики П. л. начала развиваться после работ Г. X. фон Вригта.

В П. л. принимается, что «лучше» и «хуже» взаимно определимы: один объект лучше другого в том и только том случае, когда второй хуже первого. Напр.: «Здоровье лучше болезни» равносильно «Болезнь хуже здоровья». Равноценное определяется как не являющееся ни лучшим, ни худшим («Бронзовая скульптура равноценна мраморной, только если бронзовая скульптура не лучше мраморной и не хуже ее»). Равноценными могут быть и хорошие, и плохие объекты.

В числе законов П. л. положения:

  • >> ничто не лучше самого себя;
  • >> если одно лучше другого, то неверно, что второе лучше первого («Если троллейбус лучше автобуса, то неверно, что автобус лучше троллейбуса»);
  • >> ничто не может быть и лучше, и хуже другого («Неверно, что зима лучше лета и вместе с тем зима хуже лета»);
  • >> если первое лучше второго, а второе равноценно третьему, то первое лучше третьего;
  • >> все равноценно самому себе;
  • >> если первое равноценно второму, а второе — третьему, то первое равноценно третьему, и т. п.

В П. л. принимается обычно принцип аксиологической полноты для сравнительных оценок: любые два объекта таковы, что один из них или лучше другого, или хуже, или они равноценны. Этот принцип опирается на допущение, что множество вещей, ценность которых может сравниваться, охватывает все мыслимые вещи. Очевидно, однако, что сопоставляться на предмет предпочтения могут не любые объекты. Скажем, быть простым числом не лучше и не хуже, чем быть совершенным числом, но это не означает, что простое и совершенное числа в каком-то смысле равноценны. Объекты, подобные числам или геометрическим фигурам, лежат, по всей вероятности, вне области наших предпочтений. Принцип аксиологической полноты не является, таким образом, подлинно универсальным, приложимым к любым совокупностям объектов.

Неочевидна также универсальность законов, подобных такому: неверно, что наличие какого-то объекта лучше его отсутствия и вместе с тем отсутствие его лучше, чем наличие. Законами этого типа предполагается непротиворечивость множества принимаемых нами предпочтений. Хорошо известно, однако, что реальные совокупности оценок нередко бывают непоследовательными. Принятие условия непротиворечивости ограничивает применимость П. л. внутренне последовательными системами оценок.

Для некоторых типов предпочтений справедлив закон транзитивности: если первое лучше второго, а второе лучше третьего, то первое лучше третьего. В общем же случае предпочтение не является транзитивным (переходным). Напр., если кто-то предпочитает лимону апельсин, а апельсину яблоко, то из этого не вытекает, как кажется, что он предпочитает также лимону яблоко. Отказ от закона транзитивности имеет несколько неожиданное следствие. Человек, не следующий в своих предпочтениях этому закону, лишается возможности выбрать наиболее ценную вещь из неравноценных. Если он предпочитает лимону апельсин, апельсину - яблоко и вместе с тем предпочитает лимон яблоку, то какую бы из этих трех вещей он ни избрал, всегда останется вещь, предпочитаемая им самим выбранной. Если предположить, что разумный выбор - это выбор, дающий наиболее ценную альтернативу из всех имеющихся, то соблюдение закона транзитивности окажется необходимым условием разумности выбора.

П. л. находит интересные применения в экономической теории, в этике и в других дисциплинах.

Наши рекомендации