ПОДМЕНА ТЕЗИСА (лат. Ignoratio elenchi)

— логическая ошибка в доказательстве, состоящая в том, что начав доказывать некоторый тезис, постепенно в ходе доказательства переходят к доказательству другого положения, сходного с тезисом. При этом происходит нарушение закона тождества по отношению к тезису: тезис на всем протяжении доказательства должен оставаться одним и тем же. Опасность этой ошибки заключается в том, что благодаря сходству доказанного положения с тезисом создается иллюзия о доказанности именно тезиса. Напр.. доказывая положение «Н. невиновен», приводят следующие аргументы: «Н. - хороший семьянин», «Н. — передовик производства» и т. п. Из этих аргументов вытекает вывод, что Н. - хороший человек. Но этот вывод не тождествен доказываемому тезису. Налицо подмена. П. т. часто совершается при опровержении, когда опровержение положения, лишь внешне сходного с тезисом, выдают за опровержение самого тезиса или опровержение одного из аргументов (или демонстрации) рассматривают как опровержение тезиса.

Тезис в процессе доказательства можно изменять. Иногда, доказывая некоторое положение, мы осознаем, что оно не совсем верно и нужно доказывать другое положение. В таком случае следует прямо сказать об этом, отказаться от ранее выставленного тезиса и сформулировать новый тезис и после этого продолжить доказательство уже нового тезиса.

ПОДТВЕРЖДЕНИЕ

— соответствие теории, закона, гипотезы некоторому факту или экспериментальному результату. В методологии научного познания П. рассматривается как один из критериев истинности теории или закона. Для того чтобы установить, соответствует ли теория действительности, т. е. верна ли она, из нее дедуцируют предложение, говорящее о наблюдаемых или экспериментально обнаруживаемых явлениях. Затем проводят наблюдения или ставят эксперимент, устанавливая истинность или ложность данного предложения. Если оно истинно, то это считается П. теории. Напр., обнаружение химических элементов, предсказанных Д. И. Менделеевым на основе его таблицы, было П. этой таблицы; обнаружение планеты Уран в месте, вычисленном согласно уравнениям небесной механики Ньютона, было П. механики и т. п. С логической точки зрения процедура П. описывается следующим образом. Пусть Т~ проверяемая теория, A — эмпирическое следствие этой теории, связь между Т и А может быть выражена условным суждением «Если Т, то A». В процессе проверки обнаруживается, что A истинно; делается вывод о том, что Т подтверждена. Схема рассуждения выглядит следующим образом:



Если Т, то A.
A.
Т.

Такой вывод не дает достоверного заключения, поэтому на основании истинности A мы не можем заключить, что теория Т также истинна, и говорим лишь, что теория Т подтверждена. Чем больше проверенных истинных следствий имеет теория, тем в большей степени она считается подтвержденной.

Следует иметь в виду, однако, что П. никогда не может быть полным и окончательным, т. е. сколько бы П. ни получила теория, мы не сможем утверждать, что она истинна. Число возможных эмпирических следствий теории бесконечно, мы же можем проверить лишь конечное их число. Поэтому всегда сохраняется возможность того, что однажды предсказание теории окажется ложным. Напр., утверждение «Все лебеди белы» в течение столетий подтверждалось сотнями и тысячами примеров, но однажды людям встретился черный лебедь и обнаружилось, что это утверждение ложно. Это говорит о том, что подтверждаемость некоторой теории еще не позволяет нам с уверенностью сказать, что теория истинна. Ложная теория может в течение длительного времени находить П.

ПОЛЕМИКА

- разновидность спора, отличающаяся тем, что основные усилия спорящих сторон направлены на утверждение своей точки зрения по обсуждаемому вопросу.

Наряду с дискуссией, П. является одной из наиболее распространенных форм спора. С дискуссией ее сближает наличие достаточно определенного тезиса, выступающего предметом разногласий, известная содержательная связность, предполагающая внимание к аргументам противной стороны, очередность выступлений спорящих, некоторая ограниченность приемов, с помощью которых опровергается противная сторона и обосновывается собственная точка зрения.

Вместе с тем П. существенно отличается от дискуссии. Если целью дискуссии являются прежде всего поиски общего согласия, того, что объединяет разные точки зрения, то основная задача П. — утверждение одной из противостоящих позиций. Полемизирующие стороны менее, чем в дискуссии, ограничены в выборе средств спора, его стратегии и тактики. В П., как и в споре вообще, недопустимы некорректные приемы (подмена тезиса, аргумент к силе или к невежеству, использование ложных и недоказанных аргументов и т. п.). В П. может применяться гораздо более широкий, чем в дискуссии, спектр корректных приемов. Большое значение имеют, в частности, инициатива, навязывание своего сценария обсуждения темы, внезапность в использовании доводов, выбор наиболее удачного времени для изложения решающих аргументов и т. п.

Хотя П. и направлена по преимуществу на утверждение своей позиции, нужно постоянно помнить, что главным в споре является достижение истины. Победа ошибочной точки зрения, добытая благодаря уловкам и слабости другой стороны, как правило, недолговечна, и она не способна принести моральное удовлетворение.

ПОНЯТИЕ

- общее имя, имеющее относительно ясное и устойчивое содержание и сравнительно четко очерченный объем. П. являются, напр., «дом», «квадрат», «молекула», «кислород», «атом», «любовь», «бесконечный ряд» и т. п. Отчетливой границы между теми именами, которые можно назвать П., и теми, которые не относятся к П., не существует. «Атом» уже с античности является достаточно оформившимся П., в то время как «кислород» и «молекула» до XVIII в. вряд ли могли быть отнесены к П.

Имя «П.» широко используется и в повседневном языке, и в языке науки. Однако в истолковании содержания этого имени единства мнений нет. В одних случаях под П. имеют в виду все имена, включая и единичные, и пустые. К П. относят не только «столицу» и «европейскую реку», но и «столицу Белоруссии» и «самую большую реку Европы». В других случаях П. понимается как общее имя, отражающее предметы и явления в их общих и существенных признаках. Иногда П. отождествляется с содержанием общего имени, со смыслом, стоящим за таким именем.

Термин «П.» широко употреблялся в традиционной логике, которая начинала с анализа П., затем переходила к исследованию суждения, которое мыслилось составленным из П., и далее к описаниям умозаключения, составленного из суждений как более простых элементов. В современной логике термины «П.», суждение и умозаключение употребляются редко. Схема изложения логики «понятие -> суждение -> умозаключение» отброшена как устаревшая. Изложение современной логики начинается с логики высказываний, которая лежит в фундаменте всех иных логических систем и в которой простое высказывание не разлагается на составляющие его части.

ПОРОЧНЫЙ КРУГ

— логическая ошибка в определении понятий и в доказательстве, суть которой заключается в том, что некоторое понятие определяется с помощью другого понятия, которое в свою очередь определяется через первое, или некоторый тезис доказывается с помощью аргумента, истинность которого обосновывается с помощью доказываемого тезиса. Пример П. к. в определении: «Вращение есть движение вокруг собственной оси». Понятие «ось» само определяется через понятие «вращение» («ось — прямая, вокруг которой происходит вращение»). Частным случаем П.к. в определении понятий могут быть тавтологии, напр., «Демократ есть человек демократических убеждений». Примером П. к. в доказательстве могут служить многочисленные попытки математиков (до открытия Лобачевского) доказать независимость пятого постулата от других постулатов геометрии Евклида, использовавших при этом в качестве аргументов положения, эквивалентные доказываемому пятому постулату.

«ПОСЛЕ ЭТОГО ЗНАЧИТ ПО ПРИЧИНЕ ЭТОГО» (лат. post hoc ergo propter hoc)

— логическая ошибка, заключающаяся в том, что простую последовательность событий во времени принимают за их причинную связь. Напр., когда после появления кометы возникали какие-то несчастья, часто комету считали причиной несчастья; когда в трубке возникала пустота и вода в ней поднималась, то думали, что пустота есть причина поднятия воды и т. д. Данная ошибка лежит в основе многочисленных суеверий, легко возникающих в результате соединения во времени двух событий, никак не связанных друг с другом.

ПОСПЕШНОЕ ОБОБЩЕНИЕ

—логическая ошибка в индуктивном выводе. Суть ее заключается в том, что, рассмотрев несколько частных случаев из какого-либо класса явлений, делают вывод обо всем классе. Напр.: 1 — простое число, 2 — простое число, 3 — простое число; следовательно, все натуральные числа — простые. Ошибка П.о. особенно часто совершается в повседневной жизни, когда люди по одному-двум случаям судят о целом классе.

ПРАВИЛО ВЫВОДА

— правило, определяющее переход от посылок к следствиям. П. в. указывает, каким образом высказывания, истинность которых известна, могут быть видоизменены, чтобы получить новые истинные высказывания. Напр., правилоотделения устанавливает, что если истинны два высказывания, одно из которых имеет форму импликации, а другое является основанием (антецедентом) этой импликации, то и высказывание, являющееся следствием (консеквентом) импликации, истинно. Это правило, называемое также правилом модус поненс, позволяет «отделить» следствие истинной импликации, при условии, что ее основание истинно. Скажем, от посылок «Если цирконий — металл, он электропроводен» и «Цирконий — металл» можно перейти к заключению «Цирконий электропроводен».

ПРАВИЛО ЛОККА

— правило, формулируемое так: если некоторое свойство A принадлежит любому, но фиксированному элементу изучаемого множества М (т. е. является параметром), то это свойство принадлежит и всем элементам данного множества. Символически оно записывается так:

А(а)
" хА(х)

Над чертой в посылке А(а) указывается принадлежность свойства А любому, но фиксированному элементу а некоторого множества, под чертой, т. е. в заключении, говорится о том, что свойство А принадлежит всем элементам этого множества. П. Л. широко используется в логико-математических системах. Оно часто истолковывается как правило обобщения и обосновывает, напр., почему мы можем доказывать теоремы в геометрии, имеющие общий характер, на индивидуальном чертеже. Так, доказывая теорему о том, что сумма внутренних углов треугольника равна двум прямым, мы пользуемся некоторым треугольником ABC, нарисованным на доске. Этот треугольник, однако, рассматривается нами как любой треугольник, поскольку от длины сторон, величины его углов, от его площади мы отвлекаемся: они не принимаются во внимание нами при доказательстве нашей теоремы. Этот треугольник выступает как параметр а. Доказывая, что ему принадлежит свойство А (а именно, что сумма его внутренних углов равна двум прямым), мы тем самым доказываем принадлежность этого свойства всякому треугольнику.

ПРАГМАТИКА

— раздел семиотики, изучающий отношения между знаковыми системами и теми, кто воспринимает, интерпретирует и использует их. Для исследования прагматических свойств и отношений, существенных для адекватного восприятия и понимания текстов, чисто лингвистических и логических методов часто оказывается недостаточно и приходится прибегать также к методам психологии, психолингвистики, этологии.

Наши рекомендации