ОТНОШЕНИЕ (в логике) отождествляется с многоместным предикатом

Предикаты подразделяются на одноместные, соответствующие свойствам предметов, и многоместные (двухместные, трехместные и вообще п-местные, где п ≥2), соответствующие О. При этом предикаты записываются в виде пропозициональных функций (см.: Функция пропозициональная). Число переменных в функции характеризует число мест, на которые могут подставляться имена предметов. Так, пропозициональная функция Р(х) является функцией с одной переменной и соответствует свойству; пропозициональная функция xRy с двумя переменными соответствует двухместному О.; пропозициональная функция R(x, у, z) с тремя переменными соответствует трехместному О. и т. д. Примером одноместного предиката и соответствующей ему пропозициональной функции от одной переменной может быть функция «четное число (х)» или «x — четное число». Она соответствует свойству «быть четным числом». Примером двухместного предиката и соответствующей ему пропозициональной функции от двух переменных может быть функция «х больше у». Она соответствует двухместному О. «больше». Примером трехместного предиката и соответствующей ему пропозициональной функции от трех переменных может быть функция «х находится между у и z». Она соответствует трехместному О. «находиться между». Свойство, таким образом, представляет собой такую характеристику предмета, приписывание которой одному-единственному индивиду приводит к образованию либо истинного, либо ложного суждения. Так, подставив в функцию «х - четное число», соответствующую свойству, вместо переменной х индивид 4, мы получим истинное суждение «4 - четное число». Произведя вместо х подстановку числа 5, мы получим ложное суждение. О. же есть такая характеристика, которая для образования либо истинного, либо ложного суждения требует по меньшей мере приписывания ее двум предметам. Так, подставив вместо х и у в функцию «х больше у» числа 5 и 3, мы получим истинное суждение «5 больше 3»; подставив же числа 1 и 2, мы получим ложное суждение «1 больше 2». Если же мы припишем О. «больше» одному предмету, напр. числу 3, то получим выражение «3 больше», которое не образует истинного или ложного суждения, а является бессмысленным выражением.

ОПРЕДЕЛЕНИЕ КЛАССИЧЕСКОЕ, или: Определение через род и видовое отличие,

- определение, в котором предметы определяемого понятия вводятся в объем более широкого понятия и при этом с помощью отличительных признаков (видовое отличие) выделяются среди предметов этого более широкого понятия. Примерами О. к. могут быть: «Ромб есть плоский четырехугольник, у которого все стороны равны» (1), «Лексикология есть наука, изучающая словарный состав языка» (2). В О. к. (1) ромб (определяемый предмет) вводится сначала в класс плоских четырехугольников (род), а затем при помощи специфицирующего признака «иметь равные стороны» (видовое отличие) выделяется среди других плоских четырехугольников, отличается от них. В определении (2) определяемый предмет вводится в класс наук (род), а затем посредством указания специфицирующего признака «изучать словарный состав языка» (видовое отличие) выделяется среди других наук, которые не обладают этим признаком. В отличие от О. к. (1), объем определяемого понятия в О. к. (2) представляет класс, состоящий лишь из одного элемента (см.: Класс, Множество в логике). Многие научные и повседневные определения принимают форму О. к. В отличие от повседневных, в научных О. к. (если речь идет об опытных науках) видовое отличие всегда должно представлять собой существенный признак. По отношению именно к О. к. (или к тем, которые могут быть интерпретированы как О. к.) формулируются известные правила (см.: Определение). Родо-видовые отношения играют большую роль не только в О. к., но и при делении понятий и в классификациях, где процесс деления родового понятия на составляющие его виды играет важную роль. Поэтому o.k. или определения через род и видовое отличие часто в логике называют классификационными.

ОТНОШЕНИЕ РЕФЛЕКСИВНОЕ

-бинарное (двухместное) отношение R, определенное на некотором множестве и отличающееся тем, что для любого х некоторого множества элемент х находится в отношении R к самому себе, т. е. для любого элемента х этого множества имеет место xRx. Примерами О. р. могут быть: равенство (=), меньше или равно (≤), одновременность, сходство и др. Так, каждое событие х одновременно с самим собой, т. е. имеет место xRx.

ОТНОШЕНИЕ СИММЕТРИЧНОЕ

-бинарное (двухместное) отношение R, определенное на некотором множестве и характеризующееся тем, что для любых элементов х и у этого множества из того, что х находится к у в отношении R(xRy), следует, что и у находится в том же отношении к х(у Rx). Примером О. с. может быть равенство (=), отношение типа равенства, подобия, одновременности, некоторые отношения родства и др. Так, отношение братства - симметрично (если речь идет о любых лицах мужского пола), поскольку является истинным предложение: «Если х является братом у, то и у является братом х» (напр., если Иван - брат Петра, то и Петр — брат Ивана).

ОТНОШЕНИЕ ТИПА РАВЕНСТВА

-двухместное отношение R между предметами х и у области D (см.: Предметная область), удовлетворяющее следующим аксиомам (условиям): 1) аксиоме рефлексивности: xRx (предмет находится в отношении R к самому себе) (см.: Отношение рефлексивное); 2) аксиоме симметричности: xRy -> yRx (если предмет х находится в отношении R к предмету у, то и у находится в отношении R к х) (см.: Отношение симметричное); 3) аксиоме транзитивности: xRy & yRz-> xRz (если предмет х находится в отношении R к предмету у и у находится в отношении R к z, то х находится в отношении Л к г) (см.: Отношение транзитивное). Если к.-л. конкретное по содержанию отношение R удовлетворяет всем аксиомам (1) — (3), то оно является О. т. р. Так, отношения равенства, равномощности двух множеств, обмениваемости товаров на рынке, подобия и т. п. удовлетворяют нашим аксиомам, а потому являются О. т. р. Таково же и отношение одновременности (событий), поскольку предложения «Каждое событие одновременно с самим собой» (см. аксиому (1)), «Если событие х одновременно с событием у, то и у одновременно с х» (см. аксиому (2)), «Если х одновременно с у и у одновременно с z, то и х одновременно с z» (см. аксиому (3)) являются истинными. Отношение же «больше» не является О. т. р., поскольку оно не удовлетворяет аксиомам (1) и (2): предложения «Каждый предмет х больше самого себя», «Если предмет х больше предмета у, то и у больше х» являются ложными.

О. т. р. играют большую роль в логике. С их помощью можно выделять в предметах той или иной области некоторые общие свойства и соответствующие им множества (см.: Определения через абстракцию) и тем самым объяснить процесс формирования понятий.

ОТНОШЕНИЕ ТРАНЗИТИВНОЕ

-двухместное отношение R, определенное на некотором множестве, характеризующееся тем, что для любых х, у, z этого множества из xRy и yRz следует xRz (xRy & yRz-> xRz). Примерами О.т. могут быть: «больше», «меньше», «равно», «подобно», «выше», «севернее» и др. Так, если х больше у, а у больше z, то х больше z.

Наши рекомендации