ЗАКОН КОМПОЗИЦИИ (от лат. Compositio - сочинение, составление)

- общее название ряда логических законов, позволяющих объединять следствия определенных условных высказываний или разделять их основание.

Один из этих законов можно выразить так: если верно, что если первое, то второе, и если первое, то третье, то верно, что если первое, то второе и третье. Напр.: «Если верно, что стороны квадрата равны, и верно, что его диагонали равны, то у квадрата равны как его стороны, так и его диагонали».

Символически (р, q, r - некоторые высказывания; & — конъюнкция, «и»; -> - импликация, «если, то»):

((p->q)&(p->r))->(р->(q&r)), если (если р, то q) и (если р, то r), то (если р, то q и r). Иногда этот закон называют также законом гипотетического силлогизма.

Другой 3. к.: если дизъюнкция двух высказываний влечет третье высказывание, то каждый из членов этой дизъюнкции влечет это высказывание. Напр.: «Если верно, что рукопись, брошенная в огонь или брошенная в воду, погибнет, то верно, что рукопись, брошенная в огонь, погибнет».

Символически (v — дизъюнкция, «или»):

((pvq)->r)->(p->r), если (если р или q, то r), то (если р, то r); ((pvg)-> r)->(q-> r), если (если р или q, то r), то (если q, то r).

ЗАКОН КОСВЕННОГО ДОКАЗАТЕЛЬСТВА

-логический закон, позволяющий делать заключения об истинности какого-то высказывания на основании того, что отрицание этого высказывания влечет противоречие. Напр.: «Если из того, что 11 не является простым числом, вытекает то, что оно делится на число, отличное от самого себя и единицы, и то, что оно не делится на такое число, то 11 есть простое число».

С использованием символики логической (p, q — некоторые высказывания; -> — импликация, «если, то»; & — конъюнкция, «и»; ~ — отрицание, «неверно, что») закон записывается так:

(~ p-> q)&(~ p->~ q)-> p, если (если не-р, то q) и (если не-р, то не-q), то р. 3. к. д. обычно называется также формула:

(~ p-> q &~ q)-> p, если (если не-р, то q и не-q), то р. Напр.: «Если из-того, что 10 не является четным числом, вытекает то, что оно делится и не делится на 2, то 10 - четное число».

ЗАКОН ЭКСПОРТАЦИИ - ИМПОРТАЦИИ (от лат. exportare -вывозить, importare - ввозить)

— логический закон, говорящий о заменимости в определенных случаях конъюнкции («и») импликацией («если, то»), и наоборот. Его можно передать так: первое и второе влечет третье тогда и только тогда, когда первое влечет, что второе влечет третье.

Закон слагается из двух импликаций. Одна из них - законэкспортации (вынесения) - с использованием символики логической представляется так (р, q, r — некоторые высказывания, & -конъюнкция, -> - импликация):

((p&q)->r)->(p->(q->r)), если (если р и q, то r), то (если р, то (если q, то r)). Напр.: «Если верно, что плоская геометрическая фигура, имеющая четыре равные стороны и четыре равных угла, является квадратом, то, если у плоской фигуры четыре равные стороны, она является квадратом, если у нее четыре равных угла».

Вторая импликация, входящая в данный закон, именуется законом импортации (внесения). Символическая ее запись:

(p->(q->r))->((p&q)->r), если верно, что (если р, то (если q, то r)), то (если р и q, то r).

ЗНАК

- материальный предмет, воспроизводящий свойства, отношения некоторого другого предмета. Различают языковыеи неязыковые З. Среди последних выделяют три разновидности. 3.- копии обладают определенным сходством с представляемыми ими объектами, напр. фотографии, отпечатки пальцев и т. п. 3. - признаки связаны с обозначаемыми объектами как следствия со своими причинами, напр. дым - 3. и следствие огня. З. - символы представляют собой некоторые наглядные образы, используемые для представления отвлеченного и часто весьма значительного содержания, напр. чайка — символ МосковскогоХудожественного театра, Московский Кремль — символ Москвы и России и т. п. Языковые 3. характеризуются тем, что не функционируют независимо друг от друга. Они объединяются в систему, правила которой определяют способы построения 3. — правила грамматики или синтаксиса, а также правила приписывания знакам смысла, значения, употребления. Выделяют 3. естественных и искусственных языков. 3. естественного языка — отдельные слова, предложения, выражения, тексты и т. п. — состоят как из звуковых 3., так и из соответствующих им рукописных, типографских и иных 3. Развитие науки привело к введению в естественные языки специальных графических 3., используемых для выражения научных понятий: математических 3., химических, физических и иных 3. Из 3. такого рода строятся искусственные языки, правила которых — в отличие от правил естественных языков — формулируются в явном виде. Искусственные языки находят преимущественное применение в науке, где они служат не только для общения между учеными, но и как мощное средство получения новой информации об изучаемых объектах.

Различают предметное,смысловое и экспрессивноезначение 3. Предмет, обозначаемый 3., называется предметнымзначением или денотатом 3.3. обозначает свой предмет, но выражает свой смысл - свойство представлять определенные стороны, черты, характеристики обозначаемого объекта, фиксирующие область приложения 3. В науке смысл 3. выражается в понятии. Под экспрессивным значением 3. понимают выражаемые с помощью данного 3. чувства и желания человека, употребившего данный 3. в определенной ситуации.

С развитием способности извлекать и перерабатывать информацию о предметах, оперируя не с самими предметами, а со 3., их представляющими, связаны революционные перевороты в развитии науки. Напр., разработка математической символики в XVI-XVII вв. содействовала резкому ускорению развития математики и расширению сферы ее приложений в механике, астрономии, физике; развитие формализованных, информационных, машинных языков было тесно связано с развитием кибернетики. Создание специальной символики обычно открывает перед наукой новые возможности: рационально построенные системы 3. позволяют в обозримой форме выражать соотношения между изучаемыми явлениями; добиваться однозначности используемых терминов; фиксировать такие понятия, для которых в обычном языке нет словесных выражений; формулы часто выражают не только некоторый готовый результат, но и тот путь, следуя которому этот результат можно получить. Выражение информации с помощью 3. делает возможной ее передачу по техническим каналам связи и ее математическую, логическую, статистическую обработку с помощью вычислительных устройств (см.: Денотат, Смысл, Имя).

ЗНАЧЕНИЕ

— содержание, связываемое с тем или иным языковым выражением. Вопрос о 3. языковых выражений исследуется лингвистикой, семиотикой и логической семантикой. В последней наибольшим признанием пользуется концепция 3., предложенная немецким математиком и логиком Г. Фреге в конце XIX в. Дальнейшую разработку эта концепция получила в трудах Б. Рассела, Р. Карнапа, К. И. Льюиса и др.

В концепции Фреге все языковые выражения рассматриваются как имена, т. е. как обозначения некоторых внеязыковых объектов. Объект, обозначаемый языковым выражением, называется денотатом этого выражения. Напр., собственное имя «Рембрандт» обозначает голландского художника Рембрандта, а сам этот художник является денотатом имени «Рембрандт». Точно так же и имя «автор романа "Айвенго"» обозначает шотландского писателя, который является денотатом этого имени и имени «Вальтер Скотт».

Иногда денотат отождествляют со 3. Однако такое отождествление не всегда правомерно, ибо денотат представляет собой лишь одну сторону 3. языковых выражений. В этом легко убедиться, сопоставив два имени, имеющие один и тот же денотат и тем не менее различные, напр.: «автор романа "Айвенго"» и «Вальтер Скотт». Эти два имени различаются своим содержанием: первое говорит о том, что обозначаемый им объект написал определенный роман, в то время как второе говорит о том, что он носит имя «Вальтер» и фамилию «Скотт». Разница в содержании этих имен выступает с полной очевидностью в вопросе: «Был ли Вальтер Скотт автором романа "Айвенго"?» Если бы имена «Вальтер Скотт» и «автор романа "Айвенго"» были тождественны, то в этом вопросе можно было бы заменить одно другим. Однако вопрос «Был ли Вальтер Скотт Вальтером Скоттом?» имеет совершенно иное содержание, и едва ли кому-нибудь придет в голову задавать такой вопрос.

Каждое языковое выражение наряду с денотатом имеет смысл — содержание выражения, которое усваивается в процессе его понимания. Языковое выражение обозначает свой денотат и выражает свой смысл. Разные выражения могут иметь один и тот же денотат, но различаться по смыслу. Выражение может иметь смысл, но не иметь денотата. Денотат и смысл — две стороны 3. языковых выражений.

Эта концепция 3. применима и к предложениям. Предложение можно рассматривать как имя некоторого истинностного 3. - истины или лжи. Истина является денотатом истинного предложения, ложь — денотатом ложного предложения. Смыслом предложения является выражаемая им мысль, суждение. В формальных логических системах, в которых отвлекаются от смысла предложений, истинные предложения оказываются взаимозаменяемыми и точно так же взаимозаменимы ложные предложения.

ИДЕАЛИЗАЦИЯ

— процесс мысленного конструирования представлений и понятий об объектах, не существующих и не могущих существовать в действительности, но сохраняющих некоторые черты реальных объектов. В процессе И. мы, с одной стороны, отвлекаемся от многих свойств реальных объектов и сохраняем лишь те из них, которые нас в данном случае интересуют, с другой — вводим в содержание образуемых понятий такие признаки, которые в принципе не могут принадлежать реальным объектам. В результате И. возникают идеальные, или идеализированные,объекты, напр., «материальная точка», «прямая линия», «идеальный газ», «абсолютно черное тело», «инерция» и т. п. Любая наука, выделяя из реального мира свой аспект для изучения, пользуется И. и идеализированными объектами. Последние гораздо проще реальных объектов, что позволяет дать их точное математическое описание и глубже проникнуть в природу изучаемых явлений. Плодотворность научных И. проверяется в эксперименте и материальной практике, в ходе которой осуществляется соотнесение теоретических идеализированных объектов с реальными вещами и процессами.

Наши рекомендации