Позитрон.бетта распад.электронный захват
П. Дираком было получено (1928) релятивистское волновое уравнение для электрона, которое позволило объяснить все основные свойства электрона, в том числе наличие у него спина и магнитного момента. Замечательной особенностью уравнения Дирака оказалось то, что из него для полной энергии свободного электрона получались не только положительные, но и отрицательные значения. Этот результат мог быть объяснен лишь предположением о существовании античастицы электрона —позитрона.
Жолио-Кюри — Фредерик (1900—1958) и Ирен (1897—1956), — бомбардируя различные ядра a-частицами (1934), обнаружили искусственно-радиоактивные ядра (см. § 255), испытывающие b–-распад, а реакции на В, Аl и Mg привели к искусственно-радиоактивным ядрам, претерпевающим b+-распад, или позитронный распад:
(Нобелевская премия 1956 г.) Наличие в этих реакциях позитронов доказано при изучении их треков в камере Вильсона, помещенной в магнитное поле.
Таким образом, в экспериментах Жолио-Кюри, с одной стороны, открыта искусственная радиоактивность, а с другой — впервые обнаружен позитронный радиоактивный распад.
Энергетический b+-спектр, как и b–-спектр (см. § 258), непрерывен. b+-Распад подчиняется следующему правилу смещения:
1)
При столкновении позитрона с электроном происходит их аннигиляция:
в ее процессе электронно-позитронная пара превращается в два g-кванта, причем энергия пары переходит в энергию фотонов. Появление в этом процессе двух g-квантов следует из закона сохранения импульса и энергии.
Для многих ядер превращение протона в нейтрон, помимо описанного процесса (263.1), происходит посредством электронного захвата, или е-захвата, при котором ядро спонтанно захватывает электрон с одной из внутренних оболочек атома (К, L и т. д.), испуская нейтрино:
Необходимость появления нейтрино вытекает из закона сохранения спина. Схема е-захвата:
т. е. один из протонов ядра превращается в нейтрон, заряд ядра убывает на единицу и оно смещается влево так же, как и при позитронном распаде.
При е-захвате, кроме нейтрино, никакие другие частицы не вылетают, т. е. вся энергия распада уносится нейтрино. В этом е-захват (часто его называюттретьим видом b-распада) существенно отличается от b±-распадов, при которых вылетают две частицы, между которыми и распределяется энергия распада. Примером электронного захвата может служить превращение радиоактивного ядра бериллия Ве в стабильное ядро Li:
62.открытие нейтрона.Ядерные реакции под действием нейтронов.
Нейтроны, являясь электрически нейтральными частицами, не испытывают кулоновского отталкивания и поэтому легко проникают в ядра и вызывают разнообразные ядерные превращения. Изучение ядерных реакций под действием нейтронов не только сыграло огромную роль в развитии ядерной физики, но и привело к появлению ядерных реакторов
Пытаясь найти объяснение описанным экспериментам, английский физик Д. Чэдвик (1891—1974) предположил (1932), а впоследствии доказал, что новое проникающее излучение представляет собой не g-кванты, а поток тяжелых нейтральных частиц, названных им нейтронами. Таким образом, нейтроны были обнаружены в следующей ядерной реакции:
Эта реакция не является единственной, ведущей к выбрасыванию из ядер нейтронов (например, нейтроны возникают в реакциях Li (a, n) B и В (a, п) N).
Характер ядерных реакций под действием нейтронов зависят от их скорости (энергии). В зависимости от энергии нейтроны условно делят на две группы:медленные и быстрые. Область энергий медленных нейтронов включает в себя областьультрахолодных (с энергией до 10–7 эВ),очень холодных (10–7 — 10–4 эВ),холодных(10–4 — 10–3 эВ),тепловых (10–3 — 0,5 эВ) ирезонансных (0,5 — 104 эВ) нейтронов. Ко второй группе можно отнестибыстрые (104 — 108 эВ),высокоэнергетичные(108 — 1010 эВ) ирелятивистские (³1010 эВ) нейтроны.
Замедлить нейтроны можно пропуская их через какое-либо вещество, содержащее водород (например, парафин, вода). Проходя через такие вещества, быстрые нейтроны испытывают рассеяние на ядрах и замедляются до тех пор, пока их энергия не станет равной, например, энергии теплового движения атомов вещества замедлителя, т. е. равной приблизительно kT.
Медленные нейтроны эффективны для возбуждения ядерных реакций, так как они относительно долго находятся вблизи атомного ядра. Благодаря этому вероятность захвата нейтрона ядром становится довольно большой. Однако энергия медленных нейтронов мала, потому они не могут вызывать, например, неупругое рассеяние. Для медленных нейтронов характерны упругое рассеяние на ядрах (реакция типа (п, п)) и радиационный захват (реакция типа (п, g)). Реакция (п, g) приводит к образованию нового изотопа исходного вещества:
например
Часто в результате (n, g)-реакции образуются искусственные радиоактивные изо-топы, дающие, как правило, b–-распад. Например, в результате реакции
образуется радиоактивный изотоп Р, претерпевающий b–-распад с образованием стабильного изотопа серы:
Под действием медленных нейтронов на некоторых легких ядрах наблюдаются также реакции захвата нейтронов с испусканием заряженных частиц—протонов и a-частиц (под действием тепловых нейтронов):
(используется для обнаружения нейтронов) или
(используется для получения трития, в частности в термоядерных взрывах; см. § 268).
Реакции типа (n, р) и (n,), т. е. реакции с образованием заряженных частиц, происходят в основном под действием быстрых нейтронов, таккак в случае медленных нейтронов энергии атомного ядра недостаточно для преодоления потенциального барьера, препятствующего вылету протонов и a-частиц. Эти реакции, как и реакции радиационного захвата, часто ведут к образованию b–-активных ядер.
Для быстрых нейтронов наблюдается неупругое их рассеяние, совершающееся по схеме
где вылетающий из ядра нейтрон обозначен как п', поскольку это не тот нейтрон, который проник в ядро; п' имеет энергию, меньшую энергии п, а остающееся после вылета нейтрона ядро находится в возбужденном состоянии (отмечено звездочкой), поэтому его переход в нормальное состояние сопровождается испусканием g-кванта.
Когда энергия нейтронов достигает значений 10 МэВ, становятся возможными реакции типа (n, 2n). Например, в результате реакции
образуется b–-активный изотоп U, претерпевающий распад по схеме
U ® Np + е.
Реакция деления ядра.
реакция деления ядра, заключающимся в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе.
Замечательной особенностью деления ядер является то, что оно сопровождается испусканием двух-трех вторичных нейтронов, называемыхнейтронами деления. Так как для средних ядер число нейтронов примерно равно числу протонов (N/Z»1), а для тяжелых ядер число нейтронов значительно превышает число протонов (N/Z»1,6), то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Они могут претерпеть ряд b–-превращений, сопровождаемых испусканием g-квантов. Так как b–-распад сопровождается превращением нейтрона в протон (см. (258.1)), то после цепочки b–-превращений соотношение между нейтронами и протонами в осколке достигнет величины, соответствующей стабильному изотопу. Например, при делении ядра урана U
1)
осколок деления Хе в результате трех актов b–-распада превращается в стабильный изотоп лантана La:
Осколки деления могут быть разнообразными, поэтому реакция (265.1) не единственная приводящая к делению U. Возможна, например, реакция