Охлаждение периферийными форсунками
2) через пояса завес, которые представляют собой ряд мелких (обычно тангенциальных) отверстий, выполненных во внутренней стенке камеры. Указанные отверстия могут иметь форму окружности или кольцевой щели.
Рис.56
Пояса завес
Обычно пояса завес выполняются перед наиболее теплонапряженны-ми зонами камер ЖРД.
Для ЖРД малых тяг, используемых на высотах до 5км, как правило, достаточно иметь только завесное охлаждение.
3) через пористые вставки (транспирационное охлаждение). Охладитель подается в камеру ЖРД через вставки, выполненные из пористого материала, уставленные во внутренней стенке камеры. В качестве преимущества указанного способа охлаждения необходимо отметить равномерное распределение охладителя по внутренней поверхности камеры. К недостаткам транс-пирационного охлаждения можно отнести высокое гидравлическое сопротивление материала вставок, пониженное значение прочности, сложность закрепления вставки в стенке камеры, а также зашлаковывание пористых вставок в процессе эксплуатации.
Система теплозащитных покрытий (ТЗП)
Использование ТЗП на наиболее теплонапряженных элементах двигательной установки при неизменных внешних тепловых нагрузках позволяет снизить габаритно-массовые характеристики ДУ на 15-20 %, если бы обеспечение нормативно-прочностных характеристик осуществлялось путем увеличения толщины элементов конструкции или постановкой дополнительных ребер жесткости.
Различают активные и пассивные ТЗП. К пассивным ТЗП относятся теплоизоляционные и емкостные, а к активным (аблирующим) - сгорающие, коксующиеся и испаряющиеся.
Абляция - комплексный процесс разрушения материала, включающий нагрев, плавление, испарение, разрушение и механический унос материалов.
Процесс абляции является планируемым, то есть толщина покрытия зависит от условий эксплуатации и может быть рассчитана.
Условия работы стенок камеры осложнены тем, что вследствие неравномерности смешения компонентов топлива даже при значениях среднего коэффициента избытка окислителя меньше единицы вблизи стенок могут возникать местные участки с наличием свободного окислителя. При высокой температуре окисление металлов протекает очень быстро и может привести к прогоранию стенок.
Высокие скорости газового потока в сопле способствуют эрозии — размыванию материала стенки. Процесс эрозии усиливается при достижении стенками температуры размягчения материала, а также при наличии в потоке твердых частиц (сажа, твердые продукты полного и неполного горения). Эрозия может привести к недопустимому уменьшению толщины стенок камеры и их разрушению.
Таким образом, для обеспечения надежной работы стенок камеры требуется защита их от чрезмерного нагрева, окисления (коррозии) и размывания (эрозии). Основным требованием, предъявляемым к системам защиты стенок, является надежное обеспечение необходимого ресурса при минимальном снижении удельной тяги и минимальном увеличении веса камеры.
Емкостные ТЗП
На аккумуляции тепла стенками камеры в процессе нестационарного теплообмена с газом основан метод так называемого емкостного охлаждения камеры.
Очевидно, что время безопасной работы камеры при емкостном охлаждении будет ограничено временем, за которое температура огневой по-верхности достигнет предельно допустимой, которая близка к температуре плавления материала; при этом глубинные слои стенки должны обеспечивать необходимую прочность. Время достижения опасной температуры зависит от уровня температуры плавления или сублимации для данного материала, его теплоемкости и теплопроводности.
Чем выше теплоемкость материала, тем большее количество тепла может аккумулироваться в массе стенки, тем медленнее будет расти температура стенки со стороны газа. Увеличение теплопроводности материала позволяет быстрее отводить тепло от огневой поверхности и также замедляет рост Тст.г.
Различные материалы имеют различные сочетания значений теплоемкости и теплопроводности, поэтому в одинаковых условиях время безопасной заботы для них различно.
Время безопасной работы медной стенки, несмотря на ее более низкую, чем у стали, температуру плавления и примерно одинаковую теплоемкость, существенно больше. Причина в значительно большей теплопроводности меди.
В стальной стенке тепло, воспринятое огневой поверхностью, не отводится в глубь стенки с такой же скоростью, как в медной, поэтому температура поверхности возрастает очень быстро, в то время как соседние слои материала относительно холодные. Таким образом, теплоемкость стальной стенки используется лишь частично, а время безопасной работы лимитируется теплопроводностью.
Материалы, относящиеся к емкостным ТЗП должны обладать хорошими теплоаккумулирующими способностями при высоких значениях температуры разрушения материала (вольфрам, молибден, медь и т.д.).
Теплоизоляционные ТЗП
Защита стенок камеры облегчается при использовании материалов, более тугоплавких, чем современные конструкционные металлы. Такими материалами являются карбиды и окислы металлов, различные виды огнеупорной керамики и металлокерамики, графиты, обладающие низкими значениями коэффициента теплопроводности. В связи с более высокой температурой плавления возможно повышение температуры стенки со стороны газа и, следовательно, снижение тепловых потоков в стенку.
Некоторые современные керамические материалы хорошо противостоят нагреву, химическому и эрозионному воздействию газового потока, однако имеют и существенные конструктивные и эксплуатационные недостатки. К ним относятся довольно низкое сопротивление разрыву и изгибу, хрупкость (опасны удары и сотрясения) и недостаточное сопротивление тепловому удару: керамика склонна к растрескиванию при быстром изменении температуры (запуск или остановка двигателя).
Тугоплавкие материалы могут применяться для изоляции основного материала стенки со стороны огневой поверхности. Так как тугоплавкие покрытия имеют обычно низкую теплопроводность, то температура основного материала значительно ниже температуры огневой поверхности. Как видно, в этом случае низкая теплопроводность не является недостатком (если температура плавления покрытия достаточно высока). Изменение температуры в основном материале, имеющем большую теплопроводность, менее значительно. Толщина тугоплавких покрытий составляет 0,1— 0,6 мм.
Уместно отметить, что аналогичную керамическим покрытиям роль в эксплуатации двигателя выполняют плохо теллопроводящие отложения сажи, кокса и шлака.
Тугоплавкие материалы лучше нержавеющей стали по таким показателям, как допустимая температура, удельный вес, теплоемкость, коэффициент линейного расширения.
В качестве примера можно назвать покрытую керамикой "Ниафракс А" камеру ЖРД американского управляемого снаряда "Найк", работающую без жидкостного охлаждения 35 сек. (Компоненты топлива - углеводородное горючее с азотной кислотой, Т гор = 2780°С). Экспериментальные сопла, выполненные из "Ниафракса", работали в условиях ЖРД до 60 сек.
Аблирующие ТЗП
При организации теплозащиты абляцией материал стенок должен обладать высокой теплотой плавления или сублимации и в то же время - низкой теплопроводностью. В этом случае количество тепла, отводимого уносимым материалом, преобладает над количеством тепла, аккумулируемого в сохраняющихся слоях материала стенок.
При расчете характеристик ЖРД, сопло которого имеет теплозащиту абляцией, необходимо учитывать изменение площади проходных сечений сопла (прежде всего критического ) по времени.
Теплозащитные покрытия, полученные на основе полимерных материалов, являются практически единственными теплозащитными системами, позволяющими наиболее эффективно защищать конструкцию ДУ от воздействия высокотемпературных газовых потоков.
Указанное обстоятельство определяется многообразием форм поглощения тепловой энергии полимерными материалами в результате их плавления, сублимации и деструкции.
Большинство исследователей при рассмотрении механизма работы полимерных ТЗП указывает на образование при термодеструкции в полимерных покрытиях трёх подвижных зон взаимодействия со средой:
- зона, непосредственно примыкающая к газовому потоку;
- переходная зона, в которой происходят основные реакции пиролиза полимеров;
- зона практической незатронутости материала.
Теплозащитные свойства полимерных ТЗП складываются из их спо
собности поглощать и задерживать тепло (химические факторы абляции) и
противостоять механической эрозии газовой струи (механические факторы
абляции).
Факторы химической абляции. Тепло, подводимое к поверхности ТЗП, первоначально поглощается за счёт большой теплоёмкости полимеров, а скорость продвижения изотермы ограничивается малой теплопроводностью. Однако замедление продвижения тепла вглубь материала приводит к резкому увеличению температуры в поверхностных зонах покрытий, что ускоряет деструкцию материала полимеров.
Дальнейшее поглощение части тепловой энергии, подводимой к ТЗП, осуществляется за счёт различных фазовых превращений, претерпеваемых полимерным материалом в процессе прохождения термодеструкции. Выделяющиеся при термодеструкции газообразные продукты, диффундируя в окружающую среду, охлаждают нагретые внешние слои материала, тем самым дополнительно поглощая ещё некоторое количество тепловой энергии. Указанный "термоблокирующий" эффект зависит от количества материала подвергнутого деструкции; скорости абляции материала и энтальпии газового потока. Кроме того, немаловажное значение на величину поглощённого тепла оказывают состав и количество газообразных продуктов деструкции. Наибольший теплрпоглощающей способностью отличаются летучие продукты, содержащие большое количество водорода.
Следующий возможный фактор, в результате которого поглощается ещё некоторая часть тепловой энергии - поглощение тепла за счёт излучения нагретой поверхностью. В данном случае тепловое излучение зависит, в основном, от степени нагрева поверхности материала и определяется уравнением Стефана-Больцмана, как функция температуры поверхности в 4-й степени. Отсюда следует, что наибольшей излучательной способностью должны обладать полимерные материалы, у которых процессы абляции сопровождаются более высоким нагревом поверхности (т.е. материалы, содержащие неорганические наполнители, различные обуглероженные материалы и т.п.).
Исходя из вышеизложенного, следует, что тепловой баланс на поверхности аблирующего ТЗП состоит из слагаемых поглощения подводимого тепла за счёт:
- теплоёмкости полимеров;
- химических реакций (фазовых переходов);
- выделения летучих продуктов деструкции и излучения. При этом следует отметить, что указанные реакции имеют место только в двух первых подвижных зонах, тогда как третья зона (зона незатронутого материала) несёт на себе функции теплоизоляционного и конструкционного материала.
Механические факторы разрушения обусловлены в основном термическими и механическими эффектами. Согласно работам ряда исследователей, разрушение полимерных ТЗП, их эрозионный унос, складывается из разрушения материалов вследствие больших термических напряжений, сублимации, испарения, а также чисто механической эрозии покрытий.
Устойчивыми оказались ТЗП, полученные на основе коксующихся полимером, способных образовывать при термодеструкции прочный поверхностный слой, предохраняющий нижележащие слой полимера от интенсивного разрушения. Величина и прочность образованного поверхностного слоя в ряде случаев является единственной определяющей величиной эрозионной стойкости полимерных ТЗП. Одним из наиболее эффективных методов упрочнения поверхностного слоя ТЗП, образованного при термодеструкции коксующихся полимеров, оказалось отложение в порах кокса вторичных продуктов. При термодиструкции подавляющего большинства полимерных ТЗП в струе ЖРД создаются благоприятные термические условия для получения пироуглерода (пиролитического графита), отложение которого на внутренней поверхности стенок пор способствует значительному улучшению физико-механических и теплофизических свойств поверхностного слоя ТЗП. В литературе приводится прямая взаимосвязь между способностью полимеров образовывать пироуглерод и эрозионной стойкостью ТЗП. Наиболее прочный поверхностный слой образуется при термодиструкции полимерных ТЗП, полученных на основе коксующихся полимеров и содержащих в своём составе большое количество атомов углерода. Кроме того, на прочностные характеристики твёрдых продуктов пиролиза существенное влияние оказывает количественное содержание в полимере кислорода, способного вызывать преждевременное окисление образующихся при пиролизе обуглероженных продуктов.
На эрозионную стойкость полимерных ТЗП определённое влияние, помимо прочности поверхностных слоев, образующихся при термодиструкции, оказывает величина механической прочности ТЗП в исходном состоянии. Экспериментально доказано, что чем больше прочность полимера (величина его разрывного напряжения), тем дольше период разрушения материала. Однако, исходя из механизма эрозии, представляющего собой процесс разрушения материала за счёт упругих и пластических деформаций, следует ожидать, что указанное равенство справедливо лишь в случае сохранения материалом некоторой эластичности. Положительное влияние эластичности полимеров на их эрозионную стойкость состоит в уменьшении абразивного износа покрытий за счёт срезывающих усилий, имеющих место при проявлении пластической деформации.
Таким образом, основными требованиями предъявляемыми к полимерным материалам, предназначенным для создания ТЗП, являются:
- высокие температуры плавления или разложения;
- низкий коэффициент теплопроводности и высокая теплоёмкости;
- большая излучательная способность;
- выделение при пиролизе большого количества низкомолекулярных газообразных продуктов;
- образование при пиролизе прочного твёрдого остатка;
- высокая прочность и небольшая величина жёсткости полимеров.
Сгорающие ТЗП
Они представляют собой твердотопливную систему, состоящую из
горючего и окислителя, причем элементов, являющихся горючим существенно
больше по сравнению с тем количеством, которое обеспечивало бы эффектив
ный процесс горения.
Продукты сгорания такого ТЗП имеют существенно меньшую температуру, по сравнению с основным газовым потоком, что определяет возможность создания более холодного пристеночного слоя.
В случае использования указанного типа ТЗП необходимо определить оптимум между толщиной покрытия и массовыми характеристиками двигательной установки для обеспечения создания тепловой защиты.
Обычно указанный тип используется для бронировки твердотопливных зарядов РДТТ.
Коксующиеся ТЗП
Они представляют собой матричную систему на основе фенольных смол или каучука. При этом в качестве наполнителя используются асбест, стекло или нейлон. Температура материала, уносимого газовым потоком, существенно ниже по сравнению с температурой самого потока. Коксовый остаток, образовавшийся на поверхности ТЗП, имеет плотную структуру, что определяет постоянство сечений каналов.
Коксующие ТЗП могут использоваться вторично при условии их последующей пропитки фенольными смолами.
Испаряющиеся ТЗП
Они представляют собой сотовую конструкцию. В качестве материала, образующего соты используются пористые вольфрам или молибден, а в качестве наполнителя - медь.
Билет №10
1. Предвключенные насосы. (8.9). Уплотнения крыльчаток. (8.5).
2. Турбонасосная система подачи компонентов топлива. (8.1). Компоновочные схемы ТНА. (8.2).
Предвключенные насосы
Предвключенные насосы обеспечивают увеличение давления жидкости на входе в основной центробежный насос. Они бывают струйные и шнековые (бустерные).
Работа струйного преднасоса основана на процессе инжекции, т.е.
увеличении давления на входе в основной центробежный насос путем
подпитки поступающего потока жидкости более высоконапорной струей,
отбираемой от выхода центробежного насоса, рис.72.
Рис.72