Iii. энергоинформационная эволюция на земле.
Движущие силы эволюции.
Эволюция материи в первую очередь - это развитие энергоинформационных систем, способных воспринимать внешние воздействия, адекватно реагировать на них, т.е. вести интенсивный энергоинформационный обмен и передавать накопленную и переработанную информацию следующим поколениям.
Движущие силы эволюции были изложены еще Чарльзом Дарвином - это наследственность, изменчивость и естественный отбор. Наследственность или генотип особи представляет набор генетических программ возможного развития. Этот набор программ всегда избыточен, в том смысле, что реализуются только некоторые из них, под действием отбора, который в свою очередь является совокупным, формирующим воздействием внешнего энергоинформационного поля. Поле создает пространство для развития более плотной по отношению к нему энергоинформационной конфигурации живого организма, при этом только малая часть признаков развивающегося организма закреплена наследственно и жестко детерминирована, остальные формируются непосредственно под воздействием внешнего поля. Совокупность наследственных программ и приобретенных, определяют адекватность новой энергоинформационной структуры по отношению к внешнему полю, которая определяет эволюционный успех особи и передачу информации. Информация может передаваться как генетический материал от родителей к детям, так и через единое энергоинформационное поле, а у высших форм добавляется передача жизненного опыта, воспитание.
Ненаследственная изменчивость проявляется в том, что ряд родительских признаков не наследуется, эти признаки были сформированы только под влиянием внешних воздействий, и уже не актуальны для нового поколения. Другие признаки, наоборот, наследуются и усиливаются у потомков, эти признаки либо жестко закреплены генотипом, либо формируются под влиянием и внешней, и наследственной информации (мультифакторные признаки). Направленные изменения позволяют говорить об отборе, происходящем в этом направлении.
Мутации, появление нового генетического материала, который может быть востребован отбором, появляются под воздействием внешнего поля на генетический материал, причем иногда активизируются архивированные генные программы. При этом уровень архивированного генетического материала на порядки выше задействованного в ходе жизнедеятельности. Такие мутации - это реагирование организма в пределах уже имеющейся генетической информации, и проявляются при незначительных изменениях внешней среды. Появление принципиально новых прогрессивных эволюционных признаков происходит при энергоинформационных воздействиях на молекулы ДНК, записи новой информации. Таким образом, первично внешнее энергоинформационное воздействие по отношению к системе, произвольные реакции системы возможны только в рамках уже имеющейся генетической информации.
Появление и закрепление прогрессивных признаков может идти не только на уровне наследственной передачи, т. е. на уровне ДНК, но через энергоинформационные взаимодействия и передачу информации на полевом уровне. Так в рамках энергоинформационной концепции находят примирение давние споры эволюционистов. В частности подмеченное одним из первых теоретиков эволюции Ж.Б.Ламарком направленное развитие определенного признака, которое проявляется только под влиянием внешних факторов, передается по наследству, но на генетическом уровне не закрепляется. Эти закономерности были отмечены и на практике селекционерами. Но механизм закрепления и передачи этих признаков до конца не был ясен, поскольку в организме нет информационной передачи от признака к генам, от белка к ДНК. Есть только обратный механизм, поэтому единственное объяснение, данное генетиками этому явлению - случайные мутации генетического материала. Иными словами, развитие есть череда случайных перестроек ДНК, да еще, выстроенных в направлении отбора признака. Мало кто принял это объяснение, тем более практики - селекционеры, которые знают скорость передачи и усиление признака из поколения в поколение, характерное для большей части селекционного материала. Действительно, не может же одна и та же случайная мутация проявляться у большей части особей.
Единственное объяснение этого явления - введение в систему еще одного информационного фактора, энергоинформационного поля. В принципе его присутствие никто не отвергал, называя это воздействие просто факторами внешней среды, не конкретизируя и не объясняя их действие. А действие их направленное и информативное, первичное по отношению к любому материальному проявлению. Все изменения, происходящие с живой системой, обусловлены энергоинформационными воздействиями, ДНК используется внешним полем для записи изменений, и дальнейшей наследственной передачи. Этот долгий путь передачи используется только для части информации с целью получить информационную комбинацию при скрещивании, своего рода работа поля на перспективу. Быстрый путь передачи для большинства признаков - через энергоинформационное поле, здесь отрабатываются незначительные изменения, накапливаются из поколения в поколение и наиболее значимые из них записываются на ДНК.
В энергоинформационных системах существует естественное ограничение разнообразия, число форм, существующих в природе гораздо меньше всех возможных вариантов. Это правило свойственно всем уровням материи, и подводит нас, как и Чарльза Дарвина, к понятию отбора, жестко ограничивающего разнообразие жизненных программ. Подобный отбор проявляется не только в процессе развития при интенсивной реализации генетического материала, но и в течение всей жизни, на всех уровнях энергоинформационного обмена системы со средой, включая уровень поведенческих реакций. Отбор нужной энергоинформационной программы в среде идет не только в течение жизни, но и после смерти, когда отбирается уже свободная энергоинформация по степени интенсивности передающей ее энергии. Эта интенсивность передающей энергии определяется общим уровнем энергетики организма, тем уровнем свободной оперативной энергии, на котором организм решает свои жизненные задачи.
Таким образом, определяются два решающих параметра для отбора выигрышной системы - информация и энергия, а точнее их совокупность. Информация является внешним фактором, а энергия - внутренним системным. Степень развития этих факторов системы проявляется в уровне энергоинформационного обмена со средой. Организм должен в ходе жизни не только усвоить перспективную информацию, но и достичь высокого уровня энергии для ее передачи как при жизни в ходе размножения, так и после смерти в виде свободной энергоинформационной программы.
Внешний отбор всегда есть прогресс характера энергоинформационных отношений системы со средой, хотя прогрессивные признаки могут казаться невыгодными в сложившихся условиях. Здесь мы подходим к факторам неповиновения системы внешнему отбору, внутреннему системному отбору, механизм которого заключается в борьбе за существование, конкуренции за ресурс. Это стабилизирующий отбор, приносящий в энергоинформационное поле массовую фоновую информацию. Действительно, конкурирующие за определенный ресурс индивидуумы развивают приспособления для его добычи, при этом характер этих изменений становится необратимым. Система выходит из под контроля внешнего поля, не адекватна внешним воздействиям. Прогресс в такой системе не возможен, поэтому происходит элиминация, катастрофическое уничтожение носителей фоновой информации при резкой смене условий существования. Энергоинформационное поле переходит на новый эволюционный уровень, механизм энергоинформационного обмена стабилизируется, что приводит к стабилизации условий существования. Начинается новый этап развития. В ходе развития энергоинформационное поле Земли не раз подвергалось подобным потрясениям для перехода на более высокий уровень информационного обмена со средой (см. рис № 5).
Рисунок № 5. Действие катастрофы на сообщество с доминированием внутрисистемного развития.
Направления эволюции.
Неживая материя, так же является энергоинформационной, но уровень ее информационного обмена со средой на порядки ниже. В отличие от живых организмов, неживые системы не предугадывают будущие события и не реагируют адекватно. Так, например, лужа под лучами солнца не пытается никуда спрятаться, а просто высыхает, хотя информация о ней и передается следующей луже в виде высохших солей и цист микроорганизмов, уровень этого энергоинформационного обмена низкий. Таким образом, главным направлением эволюции является развитие систем упреждения событий - сенсорных, обрабатывающих информацию и дающих адекватный ответ, какой является нервная система. Развитие этих систем позволяет повысить уровень энергоинформационного обмена со средой, что является основной жизненной характеристикой.
Действительно, общий план строения, внешний вид, функциональная организация систем органов, процессы в клетке не приобретают столь значимых изменений у разных эволюционных групп, как развитие нервной системы, сенсорных систем, организация передачи наследственной информации и жизненного опыта. При этом одним из наиболее важных признаков прогрессивной группы является повышение общего уровня энергетики.
Пример такого эволюционного консерватизма по отношению к второстепенным признакам можно наблюдать при конвергентном сходстве разных групп в одинаковых условиях. Например, акула, вымерший ихтиозавр и дельфин развивались в одинаковых условиях, и хотя относятся к разным таксономическим группам, их внешнее сходство очень велико. Их отличают ключевые эволюционные признаки, которые и обеспечили преемственность этих групп и развитие энергоинформационного поля Мирового океана.
Что позволило выжить акулам в конкуренции с более прогрессивными морскими млекопитающими? То же что дает прогресс дельфинам: развитие экстрасенсорных способностей восприятия, высокая степень сохранности потомства (живородящие акулы) и отчасти стабильность океанической среды. Адекватность внешним воздействиям позволила такой древней группе занять место в современных экосистемах.
Развитие экстрасенсорных способностей человека и животных является вершиной эволюции, позволяет живому организму выйти на принципиально новые уровни взаимодействия со средой, что является логичным направлением развития общего информационного поля. Эти способности действительно потрясают воображение, и мы к ним еще вернемся.
Происхождение жизни.
Происхождение жизни вопрос загадочный и всегда вызывал много споров. Жизнь произошла на Земле или другой сходной по условиям планете под влиянием внешних энергоинформационных воздействий. Уровень организации самого сложного конгломерата молекул и простейшей, живой клетки настолько разный, что самозарождение жизни кажется совершенно невероятным. Однако наиболее вероятной теорией на сегодняшний день остается случайное зарождение жизни при совокупном воздействии внешних факторов. Причем, вероятность спонтанного достижения уровня организации простейшей клетки предельно низкая. Один из исследователей сравнил эту вероятность с тем, что ветер над свалкой сможет собрать новенький Боинг.
Формированию прокариотической клетки предшествовал синтез и последующий отбор биомолекул - полимеров сложной конфигурации. Такой отбор, проходящий на молекулярном уровне организации живого присутствует и сейчас, когда количество природных молекул составляет 1 млн., искусственно синтезированных - 10 млн., а количество теоретически возможных молекул еще выше на порядки. Далее прокариоты формировались по единому принципу развития - защита информации, то есть формированию белковой структуры вокруг информационных молекул, нуклеиновых кислот. Подобный уровень организации живого - существует и сейчас, это вирусы.
Вирусы - представляют собой конгломерат белков и нуклеиновых кислот, не имеют собственного механизма биосинтеза, то есть считывания информации и синтеза белков, для этого они используют имеющиеся механизмы в живых клетках. Только такой способ существования позволил им пройти такой длительный эволюционный путь. Однако их существование доказывает возможность жизни и развития даже таких простейших структур. Вероятно, свободное существование таких примитивных энергоинформационных конгломератов возможно только в хаотической среде насыщенной готовыми белковыми молекулами разного строения. Среди этого разнообразия структура отбирала наиболее подходящие для себя аминокислотные последовательности, но это возможно только под действием внешних энергоинформационных воздействий, задающих в пространстве шаблон возможного развития. Параллельно с отбором материала для будущей клетки формируются механизмы наследственной передачи информации, биосинтеза белка, завершается процесс разделения информационных и энергетических функций молекул. Структура стремится к целостности, к равновесию со средой на новом уровне.
Процесс формирования, специализации и отбора сложнейших молекулярных взаимодействий в клетке настолько сложен, что мог идти только при непосредственном внешнем энергоинформационном воздействии. То есть информация о строении материи всегда первична по отношению к самой материи и является надматерией. Само появление такого энергоинформационного воздействия в первичном поле Земли - тайна, которую нам еще предстоит разгадать.
На низком уровне развития любая система более стабилизирована энергетически, более устойчива, нежели высокоорганизованная, которые более лабильны и изменчивы. Поэтому для формирования таких систем требуется более высокая энергетика среды, ее энтропия, высокая хаотичность. Это достигается мощным внешним воздействием целого ряда факторов. В результате сформированная система обладает высоким уровнем связанной энергии и огромным скрытым потенциалом, но информативность этой системы очень низкая. Для прихода такой системы к стабилизации требуется гораздо больше взаимодействий, а, следовательно, времени.
В дальнейшем развитие происходит при меньшей степени энергообмена со средой, но при большем уровне обмена информации. Уровень энтропии и хаоса у сложных систем снижается, они быстро и адекватно реагируют даже на незначительные воздействия, опережают их, скорость развития существенно ускоряется.
Любая система стремится к повышению уровня информационных взаимодействий и самосознанию. При этом целью развития и усложнения системы является принцип сохранения энергии. Действительно, простые системы способны существовать только в условиях высокой внешней энергетики. При понижении уровня внешней энергии, система вынуждена вырабатывать механизмы сохранения энергии и, следовательно, усложняется.
Зарождение жизни было возможно только в условиях хаоса и высокой энтропии, которые появились при постепенном остывании Земной коры.
Следует отметить, временные рамки этого процесса. Для подбора нужных белковых молекул из первичного бульона даже в условиях низких требований к специфичности молекул, требовалось долгое время. Высокая энтропия первичной среды позволяла ускорить эти процессы, но все равно процесс формирования полноценных одноклеточных организмов занял, по разным оценкам, не менее 1 миллиарда лет. В дальнейшем темпы эволюционного развития существенно ускорялись, т.к. скорость реагирования живой материи на внешние развивающие сигналы и есть направление эволюции.
Поиск источников энергии.
Высокий уровень энергии в первичном бульоне постепенно снижался, и доля органического вещества также уменьшалась. Поэтому для примитивных одноклеточных организмов возникла необходимость поиска энергии для существования. Живая материя, появление ее в процессе эволюции планеты - это способ сохранить энергию на поверхности остывающей планеты путем усложнения структуры и повышения уровня информации в системе.
Часть прокариот осталась гетеротрофными, они включились в круговорот веществ, до сих пор выполняя важнейшие функции разложения органических остатков. Эти бактерии могут длительное время находиться в состоянии покоя, ожидая внешние, благоприятные условия.
Но для развития информационной жизни на планете требовался путь первичного накопления энергии, компенсация потери энергии в ходе остывания планеты. Появился принципиально новый тип энергетического взаимоотношения со средой - автотрофность. Это фотосинтетические организмы, использующие энергию Солнца и хемоавтотрофы, использующие энергию Земли.
Таким образом, отличием живой материи является привлечение независимого энергетического источника, ресурсы которого практически безграничны. Появление и эволюция живой материи - это реакция системы на естественное понижение энергетического уровня планеты. Но цель этих процессов эволюция информационного поля. Обратите внимание, насколько тесно переплетены энергетические и информационные процессы в системе, какая тесная эволюционная связь между живой и неживой материей.
Одноклеточные организмы развили сложнейшие механизмы фотосинтеза, своеобразные молекулярные реакционные устройства для перевода фотонного импульса в энергию химических связей. Эти приспособления дали толчок к накоплению органического вещества и образованию кислородной атмосферы. Однако на Земле имеются источники жизни, не связанные с энергией Солнца. Энергетический источник этой жизни - энергия Земли, выделяемая в виде молекулярных веществ, в частности сероводорода. Источники такой жизни находятся глубоко на дне океана - это, так называемые, «черные курильщики». Жизнь на таком источнике энергии возможна благодаря активной деятельности бактерий хемоавтотрофов, которые перерабатывают сероводород в энергию химических связей органического вещества. Благодаря этому на дне океана смогла развиться богатейшая фауна, энергетически никак не связанная с Солнцем. Это еще одно доказательство того, что органическая жизнь возможна практически в любых условиях.
Эукариоты.
Эукариотическая клетка, безусловно, более прогрессивна по основным эволюционным признакам. В первую очередь защитой генетической информации, образованием ядра, окруженного двойной мембраной. Усложнение процессов деления, деление с редукцией хромосомного набора - мейоз, появление, собственно ДНК, как информационной молекулы и РНК, как структуры, обеспечивающей считывание наследственной информации и белковый синтез. Кроме того, усовершенствованы энергетические станции клетки, появляются митохондрии. Происхождение их скорее всего симбиотическое, путем внедрения в эукариотическую клетку симбиотической бактерии, которая начинает выполнять только энергетические функции.
Все это лишь немногие прогрессивные признаки эукариот. Одноклеточные эукариоты - высокоразвитые организмы, имеющие собственные клеточные приспособления для движения, способные быстро реагировать на внешние воздействия. Как бы не казалась амеба просто устроенной, она способна оперативно реагировать на изменение внешних условий, например, образовывать цисту, а также встраиваться в сложные трофические циклы высших животных. Для инфузорий характерно образование двух ядер: микронуклеуса и макронуклеуса. Макронуклеус, размеры которого в десятки раз превышают размеры микронуклеус, содержат только архивированную ДНК. Разница между объемом архивированной информации и задействованной в ходе жизнедеятельности очень большая, скорей всего, макронуклеус содержит информацию обо всем эволюционном пути, пройденном одноклеточным организмом.
Простейшие - это максимум возможного эволюционного развития одноклеточного организма. На примере простейших видно, что эволюция возможна в любой системе, на любом таксономическом уровне и направления эволюции на любых уровнях организации прослеживаются практически одни и те же.
Многоклеточные.
Переход к многоклеточному строению - еще одно прогрессивное изменение живой материи, достижение нового уровня организации, дающего возможность бесконечных вариаций. Сама возможность появления многоклеточных животных доказывает то, что связи между отдельными клетками существовали и при необходимости эти связи могут быть усилены вплоть до объединения этих клеток в один организм.
Наиболее вероятно происхождение многоклеточных из высокоразвитой колонии, где все клетки связаны энергоинформационными взаимодействиями. Действительно, до появления нервной системы, ответственной в первую очередь за коммуникацию в организме, эта роль выполняется всеми клетками примитивного организма.
Появление многоклеточных организмов произошло на ранних этапах эволюции одноклеточных эукариот, которые еще не развили сложные клеточные приспособления, свойственные современным простейшим. Примитивные многоклеточные гетеротрофы получили большие преимущества, в первую очередь, в охоте на более мелких одноклеточных. Но что послужило стимулом к объединению колоний клеток в единый организм? Отбор в этих колониях пошел на развитие энергоинформационного обмена между отдельными клетками. Это и химический обмен информацией, и, безусловно, волновые и полевые взаимодействия, позволившие клеткам колонии мгновенно и одинаково реагировать на внешние раздражители. Скорей всего первые многоклеточные были хищниками, подобными современным кишечнополостным, для которых характерна слабая дифференциация тканей и органов. Именно, необходимость мгновенно реагировать на внешние раздражители довела межклеточные волновые контакты до совершенства, что позволило создать единую энергоинформационную систему организма.
В дальнейшем эта система начала усложняться, отдельные группы клеток начали дифференцироваться в разные ткани и органы. Система получила бесконечное множество вариантов для развития. Что послужило причиной разделения функций клеток в организме? Во-первых, топография и расположение этих групп клеток, например, ближние к добыче становятся пищеварительными. Во вторых, индивидуальные особенности клеток, например, клетки, быстрее передающие сигнал - становятся нервными клетками. Но самое главное в тканевой дифференциации - изначальное разделение энергоинформационных свойств клеток разных тканей и органов, которые кодируются на ДНК. В процессе индивидуального развития клетка приобретает заданные энергоинформационные характеристики и в сформировавшемся организме начинает выполнять соответствующие функции. Кроме того ДНК многоклеточных организмов кодирует информацию о функционировании всего организма.
В процессе дальнейшего развития органы и ткани многоклеточных очень сложно дифференцируются сообразно выполняемым функциям, принцип энергоинформационной специфичности разных органов и тканей соблюдается неукоснительно. В высокоразвитых организмах существуют энергоинформационные поля разной интенсивности, относящиеся к функционированию разных органов и тканей. Без подобной дифференциации наше тело, как совокупность энергетических полей разной интенсивности, просто не смогло бы существовать. Но все же функциональная разрозненность органов и тканей служит одной цели - существованию единой энергоинформационной системы организма. Даже самый примитивный многоклеточный организм - единая система, обладающая общим уровнем, связывающей его энергии. Эта энергия, объединяющая организм, ничто иное, как развившаяся энергия межклеточных связей. Несомненно, что энергия этих связей на порядки ниже, чем энергия, объединяющая клетку. Это понижение энергетического уровня в системе позволяет повысить ее информационный уровень, что и происходит в процессе эволюции.
Вообще, рассматривать единую энергоинформационную структуру организма надо как совокупность энергоинформационных полей тканей и органов, взаимодействие которых определяет жизнедеятельность. Энергия, объединяющая эти поля, и объединяет весь организм. Межклеточные взаимодействия, в свою очередь, определяют энергетический потенциал тканей и органов.
Таким образом, система сбалансирована на трех уровнях энергетической организации:
- внутриклеточные процессы - информация обо всем организме, хранящаяся на ДНК;
- межклеточные взаимодействия - формирование энергетических полей тканей и органов;
- энергетические взаимодействия полей тканей и органов - энергия, объединяющая весь организм.
Достаточно воздействия на любой из этих трех уровней, чтобы вывести всю систему из строя, причем уровень энергии, объединяющей поля органов и тканей меньше, чем остальные. Для вывода системы из строя на этом уровне достаточно слабого воздействия организменной или ценотической частоты. Наибольшая интенсивность воздействия требуется для изменения ДНК. Это солнечный или звездный свет, естественная или искусственная земная радиация.
Стратегия защиты организма от распада заключается не только в повышении уровня объединяющей его энергии, но и в повышении информационного уровня системы, эффективности энергоинформационного обмена со средой, способности упреждать и быстро реагировать на неблагоприятные внешние воздействия. При этом происходит отбор и развитие сенсорных систем, анализаторов, нервной системы в целом, приспособлений для более надежной передачи наследственной информации. Это основной эволюционный путь живой материи.
Разделение полов
Переход к раздельнополости появился еще у одноклеточных организмов, хотя основным способом размножения для них остается деление. Разделение полов необходимо для повышения комбинаций наследственной информации, увеличения разнообразия генетических программ. Живая система не может развиваться без постоянного появления новой информации. Многовариантность программ представляет широкое поле для отбора способности системы отреагировать на резкое изменение среды. В многообразии есть возможность для любого самого немыслимого пути развития. Напротив, системные факторы, например, борьба за существование, сужают поле для отбора, стабилизируют систему, сокращают количество жизненных программ и стремятся к выработке одной выигрышной программы развития в сложившихся условиях.
Помимо постоянной комбинаторики генов, разделение полов несет за собой разделение функций, выполняемых мужским и женским полом. Появляется половой диморфизм и вторичные половые признаки. Современные взгляды на природу полового диморфизма таковы: различие между полами рассматривается как направление эволюции.
Мужской пол более прогрессивный, лучше улавливает внешние воздействия и передает полученную информацию потомству. Самцы находятся в авангарде развития. Поиск нужных изменений, новых генов даром не проходит и смертность самцов гораздо выше. Женский пол более консервативен, более устойчив к внешним воздействиям. Это - основа стабильности вида, возможность получить потомство в более спокойных и стабильных условиях. Взаимодействие полов и сохранение этих функций - необходимое условие развития вида.
Самцы быстрее воспринимают новую информацию, отрабатывают ее в ходе своего жизненного опыта и передают потомству. Следующее поколение наследует эти изменения и ищет новые. Поэтому различия между самцами и самками, которые мы наблюдаем, есть направление эволюционного развития. Например, млекопитающие в процессе эволюции увеличивались в размерах, поэтому самцы млекопитающих всегда больше самок, а у насекомых развитие шло в обратном направлении в сторону уменьшения размеров, у них самки крупнее самцов.
Поиск новых изменений, которые могут быть полезны потомству, дают самцам особый статус, самцы отходят от выполнения функций, связанных с уходом за потомством и добычей пищи. Их роль заключается в территориальном поведении, в борьбе за самок, отстаивании интересов стаи, выполнении функций вожака. Всю остальную работу выполняют самки и подрастающее поколение. Для человека также характерны эти закономерности. Например, испокон веков в войнах участвовали в основном мужчины.
Посмотрите на то, какой сегодня мужчина и вы увидите женщину завтрашнего дня. Поэтому выполнение исконно мужских функций женщинами сейчас вполне обычное явление, и деловую женщину будущего мы себе хорошо представляем, вот только каким будет мужчина в будущем.
Различие между полами, особенно у высших животных форм, формируется в ходе энергоинформационного обмена со средой, восприятия в ходе развития разной информации. Самцы более восприимчивы к дальним воздействиям, восприятию перспективной информации. Самки в большей степени восприимчивы к информации, уже имеющейся в информационном поле Земли. Эта закономерность может касаться и энергии интенсивной части спектра: ДНК самцов более восприимчивы к дальним воздействиям, а ДНК самок - к естественному земному излучению. Как мы помним, различия между самцами и самками определяется половыми хромосомами.
Взаимодействие полов - это взаимодействие космической и земной энергоинформации, необходимый аспект полноценного развития всего вида, т.е. необходимым дополнением к обмену наследственной информацией при взаимодействии полов является обмен энергией разного рода при половом акте, и главное наделение этой совокупной энергией жизни будущий эмбрион. Эта совокупная энергия дает дополнительный стимул для развития эмбриона.
Отказ от полового размножения и развитие бесполых форм размножения или партеногенеза, встречается у разных групп животных, даже у хордовых. Это явление - признак стабилизации вида в сложившихся условиях и не может быть прогрессивно с точки зрения эволюции. Человек, как биологический вид, также стремится к остановке своего эволюционного развития, стабилизации в сложившихся условиях. Одним из аспектов этой тенденции является кризис естественного размножения в человеческих сообществах, естественного обмена наследственной информацией и разнокачественной энергией полов. На смену приходят новые технологии: экстракорпоральное оплодотворение (ЭКО), исключающее энергетическое взаимодействие партнеров, и клонирование - вариант бесполого размножения, исключающий и обмен наследственной информацией, и обмен энергией. Отказ от энергетического и информационного взаимодействия между полами при размножении обуславливает остановку развития, стабилизацию в сложившихся условиях для всей популяции. Появившиеся в результате такого размножения индивидуумы будут способны к жизни только в сложившихся неизменных условиях и не смогут адекватно меняться вслед за постоянно меняющейся средой.