Электрические контакты
Контакт электрический - это поверхность соприкосновения составных частей электрической цепи, обладающая электрической проводимостью.
Классификация электрических контактов:
1. По возможному перемещению контактирующих деталей.
а) Разборный контакт (контактное соединение) - это конструктивный узел, предназначенный только для проведения электрического тока, но не предназначенный для коммутации (болтовое соединение “шин”, присоединение проводника к зажиму).
б) Коммутирующие контакты - это конструктивный узел, предназначенный для коммутации электрической сети (выключатель, контактор рубильник).
в) Скользящие контакты - разновидность коммутирующего контакта, у которого одна деталь скользит относительно другой, но электрический контакт при этом не нарушается (контакты реостата, щеточный контакт, шарнирный контакт, проскальзывающий контакт).
2. По форме контактирования:
а)Точечный контакт (контакт в одной физической площадке: сфера-сфера, сфера-плоскость-конус, конус-плоскость).
б)Линейный контакт - условное контактирование происходит по линии (ролик-плоскость).
в)Поверхностный контакт - условное контактирование по поверхности.
Материалы для контактных соединений.
Требования, предъявляемые к этим материалам:
1. Высокая электропроводность и теплопроводность.
2. Стойкость против коррозии.
3. Стойкость против образования пленок с высоким r.
4. Малая твердость материала, для уменьшения силы нажатия.
5. Высокая твердость для уменьшения механического износа при частых включениях и отключениях.
6. Малая эрозия.
7. Высокая дугостойкость (температура плавления).
8. Высокое значение тока и напряжения, необходимые для дугообразования.
9. Простота обработки и низкая стоимость.
Нет в природе таких материалов.
1) Медь удовлетворяет всем пунктам, кроме 2го и 5го.
2) Серебро, удовлетворяет всем требованиям за исключением дугостойкости. Используют в качестве накладок на рабочие поверхности из меди.
3) Пластина, золото, молибден. Используются на малые токи при малых напряжениях, т.к. не образуют окисных пленок.
4) Вольфрам и его сплавы (с молибденом и платиной) используются на малые и большие токи в качестве дугостойких контактов.
5) Металлокерамика - механическая смесь двух практически не сплавляющихся, металлов получаемая методом спекания их порошков или пропиткой одного расплавом другого. Один из материалов имеет большую проводимость, другой обладает механической прочностью, дугостойкостью, тугоплавкостью (серебро, вольфрам, Ag-Ni, Ag-Графит,Ag-окись кадмия, Ag-молибден). Металлокерамика применяется в качестве дугогасительных контактов, в качестве основных контактов на токи до 600 А.
6)Aлюминий для коммутирующих контактов не используется, применяется только в разборных соединениях, при ормировании его медью или серебром. Применяются также его сплавы.
Переходное сопротивление электрического контакта.
Возьмем проводник с током и подключим вольтметр, потом разорвём и опять подключим вольтметр
DU1 = I´R1 DU2 = I´R2
DU2 - DU1 = I´(R2 - R1 ) R2 - R1 = DR
DR - RK - контактное сопротивление.
Существует две причины возникновения контактного сопротивления:
1) Резкое уменьшение сечения проводника в месте контактирования (из-за микровыступов)
2) Образование на контакте окисных пленок, удельное сопротивление r которых обычно выше, чем r основного металла.
Контактное сопротивление определяется следующей зависимостью:
RK = e / pn
e - величина, зависящая от материала, способа его обработки, состояния контактирующей поверхности.
p - сила, сжимающая эти контакты.
n - показатель степени, характеризующий число точек соприкосновения:
0.5 - для точечного контакта
0.7 - для линейного контакта
1 - для поверхностного контакта
Значения для e:
Материал | e 10-3 |
медь | |
серебро | 0,5 |
олово | |
алюминий | 1,6 |
сталь |
Выводы:
1. Контактное соединение зависит от материала и его окисла.
2. Контактное соединение зависит от контактного нажатия.
3. Контактное соединение зависит от состояния контактной поверхности.
4. От условной площадки контактирования. Если будем увеличивать площадь контакта, то будет увеличиваться число физических точек контактирования. Поскольку в пределе n = 1, то нет особого смысла увеличивать поверхность соприкосновения контакта.
Часто поверхность соприкосновения выбирается вследствие эффективного рассеивания тепловой мощности, выделяемой в контактах.
Pтепл = I2 ´ RK.
Явление спекания (сваривания) контактов во включенном состоянии.
При прохождении тока в площадке контактирования, согласно закону Джоуля-Ленца, будет выделяться тепловая энергия:
Wконтакта = I2 ´ RK ´ t
Вследствие нагрева контакта, он еще в большей степени окисляется. Это приведет к увеличению контактного сопротивления RK и приведет к увеличению энергии, выделяемой в контакте WK . Ток определяется нагрузкой, он постоянный. Процесс может стать лавинообразным и при некоторой температуре на поверхности образуется слой жидкого металла. Контактное сопротивление резко уменьшается, выделяемая энергия также резко уменьшается. Металл охлаждается и кристаллизуется (затвердевает). Это явление является отрицательным для коммутирующих контактов. Для борьбы с этим явлением используется понятие - провал контактов, т.е. сжатие контактов при помощи контактной пружины.
Провал контактов - это расстояние, на которое перемещается подвижная контактная система после касания контактов.
Х - провал контакта [мм] - это паспортная техническая величина, обеспечивающая усилие нажатия.
В процессе эксплуатации контакт изнашивается (трение, выгорание части контакта вследствие электрической дуги) и контактное нажатие снижается, а значит, увеличивается сопротивление контакта и возрастает опасность сваривания. Поэтому провал контактов в процессе эксплуатации контролируется. Допустимо уменьшение провала контактов на 50% от начального значения приведенного в документации завода изготовителя.
Износ контактов. Дребезг.
Износ - это разрушение рабочей поверхности коммутирующего контакта, приводящее к изменению формы, размера, массы и к уменьшению провала контактов.
а) Износ при размыкании. Сила, сжимающая контакты, уменьшается до нуля, резко возрастает контактное сопротивление, возрастает плотность тока в последней площадке контактирования. Вся энергия выделяется в этой площадке, она разогревается и расплавляется. Между расходящимися частями контакта образуется мостик жидкого металла (контактный перешеек), этот мостик рвется и в промежутке между контактами возникает электрический разряд двух видов:
1) Для меди, при токе 0.5 А и напряжении > 15 В возникает дуговой разряд.
2) При токах < 0.5 A - искровой разряд.
Под действием высокой температуры искры (дуги) часть металла разбрызгивается и выбрасывается из контактного промежутка. При искровом разряде на поверхности контакта образуются лунки и наплывы - эрозия контактов.
б) Износ при замыкании вызван дребезгом контактов.
Дребезг - это отбрасывание подвижной контактной системы из-за упругой деформации неподвижной контактной системы (на расстояние 0.01 - 0.1 мм). Процесс этот идет с затуханием (с затухающей амплитудой). При каждом отбросе возникает электрическая дуга (искра). Дребезг может быть опасным, когда величина амплитуды колебаний системы превосходит величину упругой деформации системы. При этом происходит разрыв цепи. В противном случае возникает неопасный дребезг. Теоретически дребезга избежать невозможно, поэтому при проектировании электрического аппарата добиваются, чтобы дребезг был неопасным.
Работа контактной системы в условиях короткого замыкания.
В условиях короткого замыкания возникает опасность сваривания контактов, находящихся в замкнутом состоянии из-за электродинамического отброса и увеличение контактного сопротивления.
Меры по снижению износа контактов:
1. Применение дугостойких материалов.
2. Используют способы быстрого перемещения дуги по контакту.
3. При помощи способов компенсации электродинамических сил отброса.
Способы компенсации электродинамических сил в электрических контактах.
Электродинамические силы отброса возникают вследствие сужения линий тока, при этом возникает продольная сила, направленная внутрь проводника.
F = 10-7
Способы компенсации этой силы имеют также электродинамическую основу.
а) Мостиковый контакт
P - сила контактного нажатия;
FK - компенсационная сила.
б) Рычажный контакт
При увеличении электродинамических сил, увеличиваются и FK , поэтому размыкания не произойдёт.
Основные конструкции контактов.
1. Неподвижные разборные контакты для жесткого соединения неразборных деталей. Контакт должен быть надежным, не ослабевать при эксплуатации, контактное сопротивление должно быть линейным.
2.Подвижные контакты (неразмыкающиеся контактные соединения). Применяются для передачи тока с подвижного на неподвижный контакт.
Пример : Гибкая связь
1)Медная лента толщиной 0.1 мм.
2)Роликовый съем
3)Шарнирный контакт.
3. Коммутирующие разрывные контакты на малые токи делают одноточечными, чтобы при малых нажатиях получить высокое удельное давление контактов.
4. Коммутирующие разрывные контакты на токи десятки тысяч ампер делают многоточечными и они бывают:
а) Рычажные (проскальзывающие, перекатывающиеся).
б) Мостиковые.
в) Врубные.
г) Торцевые.
д) Розеточные.
Эти контакты бывают одноступенчатыми и многоступенчатыми.
В многоступенчатых контактах существуют минимум две пары параллельных контактов:
1.Основные или рабочие. Для проведения тока в режиме.
2.Дугогасительные играют основную роль при включении, отключении.
4.1. Перекатывающий проскальзывающий контакт.
2 -рабочая точка.
1 -точка первого касания при замыкании и последнего при размыкании.
4.2. Контакт группы Шнайдеров
Фирма Merlin Gerlin.
4.3. Герметичный контакт (геркон).
Поскольку контакты обычно работают в среде атмосферного воздуха, то они покрываются пылью и окислами, которые возникают при химических реакциях под воздействием электрической дуги, подвергаются действию агрессивных и воздушных паров. Это понижает надежность контактов, особенно при малых токах и напряжениях когда вообще может прекратится проводимость. Для предотвращения этого контакт помещают в баллон, в котором содержатся: водород, аргон, инертный газ или вакуум с парами при давлении 0,13-0,0013Па. Контакт управляется магнитами.
Такой контакт по характеристикам приближен к бесконтактным устройствам по быстродействию и ресурсу включений и отключений. Его недостатком является малая конденсационная мощность - 60 Вт.
Электрическая дуга.
Отключение цепи контактным аппаратом характеризуется возникновением плазмы, которая проходит разные стадии газового разряда в процессе преобразования межконтактного промежутка из проводника электрического тока в изолятор.
При токах выше 0,5-1 А возникает стадия дугового разряда (область 1)(рис. 1.); при снижении тока возникает стадия тлеющего разряда у катода (область 2); следующая стадия (область 3) – таунсендовский разряд, и наконец, область 4 – стадия изоляции, в которой носители электричества – электроны и ионы – не образуются за счет ионизации, а могут поступать только из окружающей среды.
Рис. 1. Вольтамперная характеристика стадий электрического разряда в газах
Первый участок кривой – дуговой разряд (область 1) – характеризуется малым падением напряжения у электродов и большой плотностью тока. С ростом тока напряжение на дуговом промежутке сначала резко падает, а затем изменяется незначительно.
Второй участок (область 2) кривой, представляющий собой область тлеющего разряда, характеризуется высоким падением напряжения у катода (250 – 300 В) и малыми токами. С ростом тока возрастет падение напряжения на разрядном промежутке.
Таунсендовский разряд (область 3) характеризуется чрезвычайно малыми значениями тока при высоких напряжениях.
Электрическая дуга сопровождается высокой температурой и связана с этой температурой. Поэтому дуга – явление не только электрическое, но и тепловое.
В обычных условиях воздух является хорошим изолятором. Так, для пробоя воздушного промежутка в 1 см требуется приложить напряжение не менее 30 кВ. Для того чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: отрицательных – в основном свободных электронов, и положительных – ионов. Процесс отделения от нейтральной частицы одного или нескольких электронов с образованием свободных электронов и ионов называется ионизацией.
Ионизация газа может происходить под действием света, рентгеновских лучей, высокой температуры, под влиянием электрического поля и ряда других факторов. Для дуговых процессов в электрических аппаратах наибольшее значение имеют: из процессов, происходящих у электродов, – термоэлектронная и автоэлектронная эмиссии, а из процессов, происходящих в дуговом промежутке, – термическая ионизация и ионизация толчком.
В коммутационных электрических аппаратах, предназначенных для замыкания и размыкания цепи с током, при отключении возникает разряд в газе либо в виде тлеющего разряда, либо в виде дуги. Тлеющий разряд возникает тогда, когда отключаемый ток ниже 0,1 А, а напряжение на контактах достигает величины 250 – 300 В. Такой разряд встречается либо на контактах маломощных реле, либо как переходная фаза к разряду в виде электрической дуги.
Основные свойства дугового разряда.
1) Дуговой разряд имеет место только при токах большой величины; минимальный ток дуги для металлов составляет примерно 0,5 А;
2) Температура центральной части дуги очень велика и в аппаратах может достигать 6000 – 18000 К;
3) Плотность тока на катоде чрезвычайно велика и достигает 102 – 103 А/мм2;
4) Падение напряжения у катода составляет всего 10 – 20 В и практически не зависит от тока.
В дуговом разряде можно различить три характерные области: околокатодную, область столба дуги (ствол дуги) и околоанодную (рис. 2.).
В каждой из этих областей процессы ионизации и деионизации протекают по-разному в зависимости от условий, которые там существуют. Поскольку результирующий ток, проходящий через эти три области, одинаков, в каждой из них происходят процессы, обеспечивающие возникновение необходимого количества зарядов.
Рис. 2. Распределение напряжения и напряжённости электрического поля в стационарной дуге постоянного тока
Термоэлектронная эмиссия.Термоэлектронной эмиссией называется явление испускания электронов из накаленной поверхности.
При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в последней площадке контактирования. Эта площадка нагревается до температуры плавления и образования контактного перешейка из расплавленного металла, который при дальнейшем расхождении контактов рвется. Здесь происходит испарение металла контактов. На отрицательном электроде образуется так называемое катодное пятно (раскаленная площадка), которое служит основанием дуги и очагом излучения электронов в первый момент расхождения контактов. Плотность тока термоэлектронной эмиссии зависит от температуры и материала электрода. Она невелика и может быть достаточной для возникновения электрической дуги, но она недостаточна для ее горения.
Автоэлектронная эмиссия.Это –явление испускания электронов из катода под воздействием сильного электрического поля.
Место разрыва электрической цепи может быть представлено как конденсатор переменной емкости. Емкость в начальный момент равна бесконечности, затем убывает по мере расхождения контактов. Через сопротивление цепи этот конденсатор заряжается, и напряжение на нем растет постепенно от нуля до напряжения сети. Одновременно увеличивается расстояние между контактами. Напряженность поля между контактами во время нарастания напряжения проходит через значения, превышающие 100 МВ/см. Такие значения напряженности электрического поля достаточны для вырывания электронов из холодного катода.
Ток автоэлектронной эмиссии также весьма мал и может служить только началом развития дугового разряда.
Таким образом, возникновение дугового разряда на расходящихся контактах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Преобладание того или иного фактора зависит от значения отключаемого тока, материала и чистоты поверхности контактов, скорости их расхождения и от ряда других факторов.
Ионизация толчком.Если свободный электрон будет обладать достаточной скоростью, то при столкновении с нейтральной частицей (атом, а иногда и молекула) он может выбить из неё электрон. В результате получатся новый свободный электрон и положительный ион. Вновь полученный электрон может, в свою очередь, ионизировать следующую частицу. Такая ионизация носит название ионизации толчком.
Для того чтобы электрон мог ионизировать частицу газа, он должен двигаться с некоторой определенной скоростью. Скорость электрона зависит от разности потенциалов на длине его свободного пробега. Поэтому обычно указывается не скорость движения электрона, а то минимальное значение разности потенциалов, какое необходимо иметь на длине свободного пути, чтобы электрон к концу пути приобрел необходимую скорость. Эта разность потенциалов носит название потенциала ионизации.
Потенциал ионизации для газов составляет 13 – 16 В (азот, кислород, водород) и до 24,5 В (гелий), для паров металла он примерно в два раза ниже (7,7 В для паров меди).
Термическая ионизация.Это – процесс ионизации под воздействием высокой температуры. Поддержание дуги после ее возникновения, т.е. обеспечение возникшего дугового разряда достаточным числом свободных зарядов, объясняется основным и практически единственным видом ионизации – термической ионизацией.
Температура столба дуги с среднем равна 6000 – 10000 К, но может достигать и более высоких значений – до 18000 К. При такой температуре сильно возрастает как число быстро движущихся частиц газа, так и скорость их движения. При столкновении быстро движущихся атомов или молекул большая часть их разрушается, образуя заряженные частицы, т.е. происходит ионизация газа. Основной характеристикой термической ионизации является степень ионизации, представляющая собой отношение числа ионизированных атомов в дуговом промежутке к общему числу атомов в этом промежутке. Одновременно с процессами ионизации в дуге происходят обратные процессы, т. е. воссоединение заряженных частиц и образование нейтральных частиц. Эти процессы носят название деионизации.
Деионизация происходит главным образом за счет рекомбинации и диффузии.
Рекомбинация.Процесс, при котором различно заряженные частицы, приходя во взаимное соприкосновение, образуют нейтральные частицы, называется рекомбинацией.
В электрической дуге отрицательными частицами являются в основном электроны. Непосредственное соединение электронов с положительным ионом ввиду большой разности скоростей маловероятно. Обычно рекомбинация происходит при помощи нейтральной частицы, которую электрон заряжает. При соударении этой отрицательно заряженной частицы с положительным ионом образуется одна или две нейтральные частицы.
Диффузия.Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги.
Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в столбе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур столба дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожно малую роль.
Падение напряжения на стационарной дуге распределяется неравномерно вдоль дуги. Картина изменения падения напряжения UД и напряжённости электрического поля (продольного градиента напряжения) ЕД = dU/dx вдоль дуги приведена на рисунке (рис. 2). Под градиентом напряжения ЕД понимается падение напряжения на единицу длины дуги. Как видно из рисунка, ход характеристик UД и ЕД в приэлектродных областях резко отличается от хода характеристик на остальной части дуги. У электродов, в прикатодной и прианодной областях, на промежутке длины порядка 10– 4 см имеет место резкое падение напряжения, называемое катодным Uк и анодным Uа. Значение этого падения напряжения зависит от материала электродов и окружающего газа. Суммарное значение прианодного и прикатодного падений напряжений составляет 15 – 30 В, градиент напряжения достигает 105 – 106 В/см.
В остальной части дуги, называемой столбом дуги, падение напряжения UД практически прямо пропорционально длине дуги. Градиент здесь приблизительно постоянен вдоль ствола. Он зависит от многих факторов и может изменяться в широких пределах, достигая 100 – 200 В/см.
Околоэлектродное падение напряжения UЭ не зависит от длины дуги, падение напряжения в столбе дуги пропорционально длине дуги. Таким образом, падение напряжения на дуговом промежутке
UД = UЭ + ЕД lД,
где: ЕД – напряжённость электрического поля в столбе дуги;
lД – длина дуги; UЭ = Uк + Uа.
В заключение следует ещё раз отметить, что в стадии дугового разряда преобладает термическая ионизация – разбиение атомов на электроны и положительные ионы за счёт энергии теплового поля. При тлеющем – возникает ударная ионизация у катода за счет соударения с электронами, разгоняемыми электрическим полем, а при таунсендовском разряде ударная ионизация преобладает на всём промежутке газового разряда.
Статическая вольтамперная характеристика электрической
дуги постоянного тока.
Важнейшей характеристикой дуги является зависимость напряжения на ней от величины тока. Эта характеристика называется вольтамперной. С ростом тока i увеличивается температура дуги, усиливается термическая ионизация, возрастает число ионизированных частиц в разряде и падает электрическое сопротивление дуги rд.
Напряжение на дуге равно irд.При увеличении тока сопротивление дуги уменьшается так резко, что напряжение на дуге падает, несмотря на то, что ток в цепи возрастает. Каждому значению тока в установившемся режиме соответствует свой динамический баланс числа заряженных частиц.
При переходе от одного значения тока к другому тепловое состояние дуги не изменяется мгновенно. Дуговой промежуток обладает тепловой инерцией. Если ток изменяется во времени медленно, то тепловая инерция разряда не сказывается. Каждому значению тока соответствует однозначное значение сопротивления дуги или напряжения на ней.
Зависимость напряжения на дуге от тока при медленном его изменении называется статической вольтамперной характеристикой дуги.
Статическая характеристика дуги зависит от расстояния между электродами (длины дуги), материала электродов и параметров среды, в которой горит дуга.
Статические вольтамперные характеристики дуги имеют вид кривых, изображенных на рис. 3.
Рис. 3. Статические вольтамперные характеристики дуги
Чем больше длина дуги, тем выше лежит ее статическая вольтамперная характеристика. С ростом давления среды, в которой горит дуга, также увеличивается напряженность ЕДи поднимается вольтамперная характеристика аналогично рис. 3.
Охлаждение дуги существенно влияет на эту характеристику. Чем интенсивнее охлаждение дуги, тем больше от нее отводится мощность. При этом должна возрасти мощность, выделяемая дугой. При заданном токе это возможно за счет увеличения напряжения на дуге. Таким образом, с ростом охлаждения вольтамперная характеристика располагается выше. Этим широко пользуются в дугогасительных устройствах аппаратов.
Динамическая вольтамперная характеристика электрической
дуги постоянного тока.
Если ток в цепи изменяется медленно, то току i1 соответствует сопротивление дуги rД1,абольшему току i2 соответствует меньшее сопротивление rД2, что отражено на рис. 4. (см. статическую характеристику дуги – кривая А).
Рис. 4. Динамическая вольтамперная характеристика дуги.
В реальных установках ток может меняться довольно быстро. Вследствие тепловой инерции дугового столба изменение сопротивления дуги отстает от изменения тока.
Зависимость напряжения на дуге от тока при быстром его изменении называется динамической вольтамперной характеристикой.
При резком возрастании тока динамическая характеристика идет выше статической (кривая В), так как при быстром росте тока сопротивление дуги падает медленнее, чем растет ток. При уменьшении – ниже, поскольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С).
Динамическая характеристика в значительной степени определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бесконечно малое по сравнению с тепловой постоянной времени дуги, то в течение времени спада тока до нуля сопротивление дуги останется постоянным. В этом случае динамическая характеристика изобразится прямой, проходящей из точки 2 в начало координат (прямая D),т. е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.
Условия гашения дуги постоянного тока.
Чтобы погасить электрическую дугу постоянного тока, необходимо создать такие условия, чтобы в дуговом промежутке при всех значениях тока процессы деионизации протекали бы интенсивнее, чем процессы ионизации.
Рис. 5. Баланс напряжений в цепи с электрической дугой.
Рассмотрим электрическую цепь, содержащую сопротивление R, индуктивность L и дуговой промежуток с падением напряжения UД, к которой приложено напряжение U (рис. 5, а). При дуге, имеющей неизменную длину, для любого момента времени будет справедливо уравнение баланса напряжений в этой цепи:
где падение напряжения на индуктивности при изменении тока.
Стационарным режимом будет такой, при котором ток в цепи не меняется, т.е. а уравнение баланса напряжений примет вид:
Для погасания электрической дуги необходимо, чтобы ток в ней всё время уменьшался, т.е. , а
Графическое решение уравнения баланса напряжений представлено на рис. 5, б. Здесь прямая 1 представляет собой напряжение источника U; наклонная прямая 2 – падение напряжения на сопротивлении R (реостатная характеристика цепи), вычитаемое из напряжения U, т.е. U – iR; кривая 3 – вольтамперную характеристику дугового промежутка UД.
Особенности электрической дуги переменного тока.
Если для гашения дуги постоянного тока необходимо создать такие условия, при которых ток упал бы до нуля, то при переменном токе ток в дуге независимо от степени ионизации дугового промежутка переходит через нуль каждый полупериод, т.е. каждый полупериод дуга гаснет и зажигается вновь. Задача гашения дуги существенно облегчается. Здесь необходимо создать условия, при которых ток не восстановился бы после прохождения через нуль.
Вольтамперная характеристика дуги переменного тока за один период приведена на рис. 6. Поскольку, даже при промышленной частоте 50 Гц, ток в дуге меняется достаточно быстро, то представленная характеристика является динамической. При синусоидальном токе напряжение на дуге сначала увеличивается на участке 1, а затем, в связи с ростом тока, падает на участке 2 (участки 1 и 2 относятся к первой половине полупериода). После прохождения тока через максимум динамическая ВАХ возрастает по кривой 3 в связи с уменьшением тока, а затем уменьшается на участке 4 в связи с приближением напряжения к нулю (участки 3 и 4 относятся ко второй половине этого же полупериода).
Рис. 6. Вольтамперная характеристика дуги переменного тока
При переменном токе температура дуги является величиной переменной. Однако тепловая инерция газа оказывается довольно значительной, и к моменту перехода тока через нуль температура дуги хотя и уменьшается, но остаётся достаточно высокой. Всё же имеющее место снижение температуры при переходе тока через нуль способствует деионизации промежутка и облегчает гашение электрической дуги переменного тока.
Электрическая дуга в магнитном поле.
Электрическая дуга является газообразным проводником тока. На этот проводник, так же как на металлический, действует магнитное поле, создавая силу, пропорциональную индукции поля и току в дуге. Магнитное поле, действуя на дугу, увеличивает ее длину и перемещает элементы дуги в пространстве. Поперечное перемещение элементов дуги создает интенсивное охлаждение, что приводит к повышению градиента напряжения на столбе дуги. При движении дуги в среде газа с большой скоростью возникает расслоение дуги на отдельные параллельные волокна. Чем длиннее дуга, тем сильнее происходит расслоение дуги.
Дуга является чрезвычайно подвижным проводником. Известно, что на токоведущую часть действуют такие силы, которые стремятся увеличить электромагнитную энергию контура. Поскольку энергия пропорциональна индуктивности, то дуга под действием своего собственного поля стремится образовывать витки, петли, так как при этом возрастает индуктивность цепи. Эта способность дуги тем сильнее, чем больше ее длина.
Движущаяся в воздухе дуга преодолевает аэродинамическое сопротивление воздуха, которое зависит от диаметра дуги, расстояния между электродами, плотности газа и скорости движения. Опыт показывает, что во всех случаях в равномерном магнитном поле дуга движется с постоянной скоростью. Следовательно, электродинамическая сила уравновешивается силой аэродинамического сопротивления.
С целью создания эффективного охлаждения дуга с помощью магнитного поля втягивается в узкую (диаметр дуги больше ширины щели) щель между стенками из дугостойкого материала с высокой теплопроводностью. Из-за увеличения теплоотдачи стенкам щели градиент напряжения в столбе дуги при наличии узкой щели значительно выше, чем у дуги, свободно перемещающейся между электродами. Это дает возможность сократить необходимую для гашения длину и время гашения.
Способы воздействия на электрическую дугу в коммутационных аппаратах.
Цель воздействия на столб возникающей в аппарате дуги состоит в увеличении её активного электрического сопротивления вплоть до бесконечности, когда коммутационный орган переходит в изоляционное состояние. Практически всегда это достигается путем интенсивного охлаждения столба дуги, уменьшения её температуры и теплосодержания, в результате чего снижается степень ионизации и количество носителей электричества и ионизированных частиц и повышается электрическое сопротивление плазмы.
Для успешного гашения электрической дуги в коммутационных низковольтных аппаратах необходимо выполнить следующие условия:
1) увеличить длину дуги путем её растяжения или увеличения числа разрывов на полюс выключателя;
2) переместить дугу на металлические пластины дугогасительной решётки, которые являются как радиаторами, поглощающими тепловую энергию столба дуги, так и разбивают её на ряд последовательно соединённых дуг;
3) переместить столб дуги магнитным полем в щелевую камеру из дугостойкого изоляционного материала с большой теплопроводностью, где дуга интенсивно охлаждается, соприкасаясь со стенками;
4) образовывать дугу в закрытой трубке из газогенерирующего материала – фибры; выделяемые под воздействием температуры газы создают высокое давление, что способствует гашению дуги;
5) уменьшить концентрацию паров металлов в дуге, для чего на этапе проектирования аппаратов использовать соответствующие материалы;
6) гасить дугу в вакууме; при очень низком давлении газа недостаточно атомов газа, чтобы ионизировать их и поддержать проведение тока в дуге; электрическое сопротивление канала столба дуги становится очень высоким и дуга гаснет;
7) размыкать контакты синхронно перед переходом переменного тока через нуль, что существенно снижает выделение тепловой энергии в образовавшейся дуге, т.е. способствует гашению дуги;
8) применять чисто активные сопротивления, шунтирующие дугу и облегчающие условия её гашения;
9) применять шунтирующие межконтактный промежуток полупроводниковые элементы, переключающие на себя ток дуги, что практически исключает образование дуги на контактах.