Зависимость сопротивления от температуры
Удельное сопротивление проводников и непроводников зависит от температуры.
Сопротивление металлических проводников увеличивается с повышением температуры. У полупроводников сопротивление сильно уменьшается при повышении температуры
У некоторых металлов при температуре, близкой к абсолютному нулю, сопротивление скачком уменьшается до нуля (явление сверхпроводимости).
В таблицах значения удельного сопротивления проводников обычно приводятся для температуры 20°C. Сопротивление или удельное сопротивление при других значениях температуры можно найти пересчетом.
23.) СВЕРХПРОВОДИМОСТЬ
cостояние, в которое при низкой температуре переходят некоторые твердые электропроводящие вещества.Сверхпроводимость была обнаружена во многих металлах и сплавах и в некоторых полупроводниковых икерамических материалах, число которых все возрастает. Два из наиболее удивительных явлений, которыенаблюдаются в сверхпроводящем состоянии вещества, - исчезновение электрического сопротивления всверхпроводнике и выталкивание магнитного потока из его объема. Первый эффектинтерпретировался ранними исследователями как свидетельство бесконечно большой электрическойпроводимости, откуда и произошло название сверхпроводимость. Исчезновение электрическогосопротивления может быть продемонстрировано возбуждением электрического тока в кольце изсверхпроводящего материала. Если кольцо охладить до нужной температуры, то ток в кольце будетсуществовать неограниченно долго даже после удаления вызвавшего его источника тока. Магнитный поток -это совокупность магнитных силовых линий, образующих магнитное поле. Пока напряженнось поля ниженекоторого критического значения, поток выталкивается из сверхпроводника. Явление С. открыто Г. Камерлинг-Оннесом в 1911 при исследовании низкотемпературного хода сопротивления ртути. Он обнаружил, что при охлаждении ртутной проволоки ниже 4 К её сопротивление скачком обращается в нуль. Нормальное состояние может быть восстановлено при пропускании через образец достаточно сильного тока или помещением его в достаточно сильное внеш. магн. поле.
24.) Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции.
Количественной характеристикой магнитного поля служит специальная физическая величина - напряженность магнитного поля, не зависящая от магнитных свойств среды. С напряженностью связана также еще одна характеристика магнитного поля - индукция.
Индукция и напряженность являются векторами.
Направление этих векторов подчиняется правилу правого буравчика: направление магнитного поля совпадает с направлением движения конца рукоядуи буравчика с правой нарезкой, движущегося поступательно в направлении тока.
Магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты) .
В СИ магнитная индукция измеряется в Тесла
Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.
Можно также рассматривать магнитное поле, как релятивистскую составляющую электрического поля. Точнее, магнитные поля являются необходимым следствием существования электрических полей и специальной теории относительности. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются свет и прочие электромагнитных волны.
25) Закон Ампера используется при нахождении силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I1 и I2; (направления токов даны на рис. 1), расстояние между которыми R. Каждый из проводников создает вокруг себя магнитное поле, которое действует по закону Ампера на соседний проводник с током. Найдем, с какой силой действует магнитное поле тока I1 на элемент dlвторого проводника с током I2. Магнитное поле тока I1 есть линии магнитной индукции, представляющие собой концентрические окружности. Направление вектора B1 задается правилом правого винта, его модуль по формуле (5) есть
Направление силы dF1, с которой поле B1 действует на участок dl второго тока, находится по правилу левой руки и указано на рисунке. Модуль силы, используя (2), с учетом того, что угол α между элементами тока I2 и вектором B1 прямой, будет равен
подставляя значение для В1, найдем
(3)
Аналогично рассуждая, можно показать, что сила dF2 с которой магнитное поле тока I2 действует на элемент dl первого проводника с током I1, направлена в противоположную сторону и по модулю равна
(4)
Сопоставление выражений (3) и (4) дает, что
т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой, равной
(5)
Если токи имеют противоположные направления, то, используя правило левой руки, определим, что между ними действует сила отталкивания, определяемая выражением (5).
Рис.1
26) магнитный момент контура с током.Можно доказать что вращающий момент М,действующий на контур с током I в однородном поле,прямо пропорционален площади S?обтекаемой током?силе тока I и индукции магнитного поляD.Кроме того,вращающий момент М зависит от положения контура относительно поля.Максимальный вращающий момент Ммакс получается когда плоскость контура параллельна линиям магнитной индукции и выражается формулой
Согласно гипотезе Ампера, внутри молекул и атомов циркулируют элементарные электрические токи. Сейчас мы уже знаем, что эти токи представляют собой движение электронов по орбитам в атоме. Если плоскости, в которых циркулируют эти токи, расположены беспорядочно по отношению друг к другу вследствие теплового движения молекул, составляющих тело, то их взаимодействия взаимно компенсируются и никаких магнитных свойств тело не обнаруживает. И наоборот: если плоскости, в которых вращаются электроны, параллельны друг другу и направления нормалей к этим плоскостям совпадают, то такие вещества усиливают внешнее магнитное поле.
Открытия Эрстеда и Ампера привели к новому и более глубокому представлению о природе магнитных явлений. Опираясь на установленную в этих опытах тождественность магнитных действий магнитов и соответствующим, образом подобранных токов, Ампер решительно отказался от представления о существовании в природе особых магнитных зарядов. С точки зрения Ампера, элементарный магнит — это круговой ток, циркулирующий внутри небольшой частицы вещества: атома, молекулы или группы их. При намагничивании большая или меньшая часть таких токов устанавливается параллельно друг другу. Таким образом, теория Ампера сделала ненужным допущение о существовании особых магнитных зарядов, позволив объяснить все магнитные явления при помощи элементарных электрических токов. Дальнейшее более глубокое изучение свойств намагничивающихся тел показало не только, что гипотеза магнитных зарядов или элементарных магнитиков излишня, но что она неверна и не может быть согласована с некоторыми экспериментальными фактами. С точки зрения теории Ампера становится совершенно понятной неотделимость друг от друга северных и южных полюсов, о которой мы говорили в предыдущем параграфе. Каждый элементарный магнит представляет собой круговой виток тока. Мы видели уже, что одна сторона этого витка соответствует северному, другая — южному полюсу. Именно поэтому нельзя отделить друг от друга северный и южный полюсы, как нельзя отделить одну сторону плоскости от другой.
27) Силу Ампера применяют в громкоговарителях, динамиках. Сила Ампера - сила взаимодействия двух токов, текущих в малых отрезках проводников, находящихся на некотором расстоянии друг от друга.
В частном случае параллельных проводников силы взаимодействия стремятся сблизить проводники, если текущие в них токи параллельны, и удалить их друг от друга, если токи антипараллельны. Таким образом, параллельные токи притягиваются, а антипараллельные - отталкиваются.
Этот физический эффект используется в определении единицы измерения силы электрического тока - Ампера. Иначе амперова сила выражается как векторное произведение: F=I[dl,B], где жирные буквы обозначают вектора, а квадратные скобки - вих векторное произведение.
28) Силу, действующую на движущуюся заряженную частицу со стороны магнитного поля, называю силой Лоренца. Эту силу можно найти с помощью закона Ампера. Силу Лоренца применяют в телевизорах, масс-спектограф.
Принцип работы: Вакуумная камера прибора помещена в магнитное поле. Ускоренные электрическим полем заряженные частицы (электроны или ионы), описав дугу, попадают на фотопластинку, где оставляют след, позволяющий с большой точностью измерить радиус траектории . По этому радиусу определяется удельный заряд иона. Зная же заряд иона, легко определить его массу.
· Основным применением силы Лоренца (точнее, её частного случая — силы Ампера) являются электрические машины(электродвигатели и генераторы). Сила Лоренца широко используется в электронных приборах для воздействия на заряженные частицы (электроны и иногда ионы), например, в телевизионных электронно-лучевых трубках, а также в масс-спектрометрии и МГД-генераторах.
· Сила Лоренца также используется в ускорителях заряженных частиц, задавая орбиту, по которой движутся эти частицы.
· Сила Лоренца используется в рельсотроне
· Велосиметрия силой Лоренца заключается в бесконтактном измерении скорости движения проводящей жидкости.
29) Закон электромагнитной индукции гласит, что переменное магнитное поле пронизывающее проводник, индуцирует в нем электрический ток. Причем, чем быстрее изменяется магнитное поле, тем сильнее индуцируемый ток.
Именно поэтому, стрелка не отклоняется, когда магнит находится в покое, ведь вместе с ним и магнитное поле остается неизменным. Отклонение стрелки в разные стороны объясняется изменением направления индукционного тока, который в свою очередь зависит от направления магнитного потока.
Явление электромагнитной индукции подтверждает то, что все законы физики симметричны. Без открытия этого явления, человечество никогда бы не продвинулось так далеко в электричестве и в жизни в целом. опыт Фарадея. Как известно, он заключался в том, что в катушку индуктивности опускался постоянный магнит, при этом стрелка гальванометра, подключенного к этой катушке, отклонялась. Аналогичное явление происходило и при вынимании магнита из катушки, с тем лишь исключением, что стрелка отклонялась в другую сторону.
Почему так происходит? Почему стрелка не остается в том же положении, когда магнит уже опущен? Почему стрелка отклоняется в разные стороны? Все просто, но сначала немного истории.
В девятнадцатом столетии, некий английский физик Майкл Фарадей проводил опыты с магнитным полем. В то время было известно, что вокруг проводника с током, существует магнитное поле. Фарадей, как и многие другие физики того времени старался доказать обратное, то есть то, что магнитное поле, может создать электрический ток. Он, на протяжении 10 лет ставил всем известный опыт, но по закону подлости, гальванометр был вне зоны видимости в момент, когда он опускал магнит. Существует мнение, что однажды, его помощник обратил внимание на гальванометр, когда Фарадей опускал магнит, и заметил отклонение, но это лишь неподтвержденные сведения. Так или иначе, в 1831 году было открыто явление электромагнитной индукции.
30) Правило Ленца
Ленца правило - ,определяет направление индукционного тока. Возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им поток магнитной индукции через площадь, ограниченную контуром, стремится компенсировать то изменение потока магнитной индукции, которое вызывает данный ток. Установлено в 1833 Э. Х. Ленцем.
Токи Фуко (в честь Фуко, Жан Бернар Леон) — это вихревые замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока. Вихревые токи являются индукционными токами и образуются в проводящем теле либо вследствие изменения во времени магнитного поля, в котором находится тело, либо вследствие движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или какую-либо его часть. Величина токов Фуко тем больше, чем быстрее меняется магнитный поток.
31.
ЭДС индукции возникает или в неподвижном проводнике, расположенном в магнитном поле, которое изменяется со временем, или в проводнике, который движется в постоянном магнитном поле. Природа возникновения ЭДС в этих случаях разная.
Когда проводник неподвижен, электрический ток появляется под действием магнитного поля. Таким образом, можно прийти к выводу, что электроны в неподвижном проводнике начинают двигаться под действием электрического поля, которое образует переменное магнитное поле. Тем самым утверждается новая фундаментальное свойство поля: изменяясь со временем, магнитное поле порождает индукционное электрическое поле. Проводник с запасом свободных электронов позволяет только выявить возникновение электрического поля.
Индукционное электрическое поле имеет другую структуру, чем электростатическое:
— Оно не связано с электрическими зарядами;
— Силовые линии поля замкнуты.
Индукционное электрическое поле — вихревое электрическое поле.
Существование электромагнитных волн было теоретически предсказано великим английским физиком Джеймсом Клерком Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на асимметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Майклом Фарадеем в 1831 году.
Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.
32.
Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока.
При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.
Это явление и называется самоиндукцией. Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.
Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока(переменного) i: E = -L(∆i/∆t)
Коэффициент пропорциональности L называется коэффициентом самоиндукции или индуктивностью контура (катушки).
Индукти́вность— коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.
В формуле: Ф= LI
Ф— магнитный поток, I — сила тока в контуре, L — индуктивность.
33.
Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1] при изменении протекающего через контур тока.
При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силузакона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.
Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).
Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.[источник?]
Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока(переменного) :
.
Коэффициент пропорциональности называется коэффициентом самоиндукции или индуктивностью контура (катушки).
При всяком изменении силы тока в проводящем контуре возникает э.д.с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.
В момент времени t=0 отключим источник тока. Ток через катушку индуктивности L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции.
34.
Взаимоиндукция (взаимная индукция) — возникновение ЭДС в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции.
Явление взаимоиндукции широко используется для передачи энергии из одной электрической цепи в другую, для преобразования напряжения с помощью трансформатора.
Трансформатор Трансформатор – это электротехническое устройство преобразующее напряжение и ток в напряжение и ток другой величины при не изменой частоте.Простейший трансформатор состоит из двух катушек первичной и вторичной размещенных на замкнутом сердечнике выполненным из ферримагнитного материала.Принцип работы основан на явлении взаимоиндукции, катушки между собой не имеют электрической связи, но существует электромагнитная связь. При подключении первичной обмотки к источнику переменного тока витки катушки создают переменное магнитное поле, которое воздействует на витки вторичной обмотки, в результате возникает ЭДС и ток во вторичной обмотке. При этом по магнитопроводу замыкается магнитный паток «Ф» (Ф=I*W).Сердечник выполнен из листовой электротехнической стали пластины, которой изолированы друг от друга лаком.
35.
Диамагне́тики — вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны. Под действием внешнего магнитного поля каждый атом диамагнетика приобретает магнитный момент I (а каждая единица объёма — намагниченность M), пропорциональный магнитной индукции B и направленный навстречу полю. Поэтому магнитная восприимчивость X =( M/H)y диамагнетиков всегда отрицательна. По абсолютной величине диамагнитная восприимчивость "X" мала и слабо зависит как от напряжённости магнитного поля, так и от температуры.
36.Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля (J↑↑H) и имеют положительную магнитную восприимчивость. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемость незначительно отличается от единицы μ > 1.
Термин «Парамагнетизм» ввёл в 1845 году Майкл Фарадей, который разделил все вещества (кроме ферромагнитных) на диа- и парамагнитные.
Атомы (молекулы или ионы) парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. В отсутствии внешнего магнитного поля парамагнетик не намагничен, так как из-за теплового движения собственные магнитные моменты атомов ориентированы совершенно беспорядочно.
Ферромагнетики.
Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое (при температуре ниже точки Кюри) способно обладать намагниченностью в отсутствие внешнего магнитного поля.
Свойства:Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.
При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.
Для ферромагнетиков характерно явление гистерезиса.
Ферромагнетики притягиваются магнитом.
Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3d-металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er .