Прямое преобразование тепловой энергии

Лекция 10

Энергетические ресурсы океана и их использование

10.1 Тепловаяэнергияокеана

Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн км2) занимают моря и океаны – акватория Тихого океана составляет 180 млн км2. Атлантиче-ского – 93 млн км2, Индийского – 75 млн км2. Так, тепловая (внутрен-няя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величи-ной порядка 1018 Дж. Однако пока люди умеют использовать лишь ничтожные доли этой энергии,

Последние десятилетия характеризуется определенными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1. В авгу-сте 1979 г. вблизи Гавайских островов начала работать теплоэнергети-ческая установка мини-ОТЕС (рисунок 10.1).. Ее полная мощность составляла в сред-нем 48,7 кВт, максимальная – 53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точнее – на зарядку аккумуляторов.

Три насоса потребовались из следующего расчета: один – для подачи теплой воды из океана, второй – для подкачки холодной воды с глубины около 700 м, третий – для перекачки вторичной рабочей жидкости внутри самой системы, т. е. из конденсатора в испаритель. В качестве вторичной рабочий жидкости применяется аммиак.

Прямое преобразование тепловой энергии - student2.ru

Рисунок 10.1. Схема термальной установки, работающей по замкнутому циклу: 1 – насос теплой воды; 2 – испаритель; 3 – насос осушителя парообразного рабоче-

го тела; 4 – осушитель; 5 – турбина с электрогенератором; 6 – конденсатор; 7 – насос для забора холодной воды; 8 – насос для подачи рабочего тела

В такой системе с помощью теплых поверхностных вод, прокачи-ваемых насосом через теплообменник испарителя, превращают в пар какое-либо подходящее рабочее тело (аммиак, фреон, пропан), создают пар повышенного давления, давая ему возможность расшириться через турбину в холодильник, где пар конденсируется при контакте с охлаж-даемыми поверхностями второго теплообменника, омываемого водой, закачиваемой из глубинных слоев океана.

Для перепадов температур между поверхностными и глубинными слоями воды в пре-делах от 15 до 26 °С он соответственно изменяется в диапазоне от 5 до 9 %. Реальный КПД, как правило, существенно ниже (2,5%).

Использование перепада температур океан-атмосфера

Идея использования перепада температур между холодным возду-хом и незамерзающей (теплой) водой подо льдом Арктики впервые бы-ла высказана во Франции А. Баржо.

Особенность работы таких станций – так называемый «треуголь-ный» цикл: нагрев и испарение рабочего тела в результате политропно-го процесса, адиабатное расширение через турбину, изотермическое сжатие при подаче в испаритель с одновременным отводом избыточно-го тепла в холодильнике.

На рисунке 10.2 приведена разработанная А.К. Ильиным и В.В. Тикме-новым схема АОТЭС с обдуваемыми воздухом теплообменниками.

Прямое преобразование тепловой энергии - student2.ru

Рисунок 10.2 - Схема арктической ОТЭС на перепаде вода–воздух:

1 – испаритель основного контура; 2 – турбина с электрогенератором;

3 – конденсатор; 4 – теплообменник контура охлаждения промежуточного рабочего тела; 5 – насос для подачи хладагента; 6 – насос для подачи рабочего те-ла; 7 – насос для подачи морской воды; 8 – водозаборник; 9 – патрубок сброса от-работанной воды

Прямое преобразование тепловой энергии

Схема ОТЭС на термоэлектрических преобразователях показана на рисунке. 10.3. В основе ее действия – явление Зеебека, заключающееся в возникновении разности потенциалов в электрической цепи, составлен-ной из материалов с различной концентрацией носителей заряда, места соединений которых нагреты до разных температур.

Прямое преобразование тепловой энергии - student2.ru

Рисунок 10.3 - Схема ОТЭС с прямым преобразованием тепловой энергии в электрическую: а – устройство отдельного блока; б, в – варианты устройства термоэлектрического преобразователя;

1 – кожух; 2 – термоэлектрический генератор; 3 – полупроводниковые элементы с n- и p - проводимостью; 4 – поверхностное изолирующее покрытие; 5 – изолятор;

6 – соединительные шины

КПД такого преобразо-вателя, выполненного на полупроводниковых элементах, достигает 10 %.

10.4.Энергияприливовиотливов

Могучее природное явление – ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Поскольку Солнце находится от Земли в 400 раз дальше, гораз-до меньшая масса Луны действует на земные поды вдвое сильнее, чем масса Солнца. Поэтому решающую роль играет прилив, вызванный Лу-ной (лунный прилив).

В морских просторах приливы чередуются с отливами теоретиче-ски через 6 ч 12 мин 30 с. Если Луна, Солнце и Земля находятся на одной прямой (так называемая сизигия), Солнце своим притяжением усиливает воздействие Луны, и тогда наступает сильный прилив (сизигийный прилив, или большая вода). Когда же Солнце стоит под прямым углом к отрезку Земля–Луна (квадратура), наступает слабый прилив (квадратурный, или малая вода). Сильный и слабый приливы чередуются через семь дней.

Приливная волна Индийского океана катится против течения Ганга на расстояние 250 км от его устья. Приливная волна Атлантического океана распро-страняется на 900 км вверх по Амазонке. В закрытых морях, например Черном или Средиземном, возникают малые приливные волны высотой 50…70 см.

Максимально возможная мощность в одном цикле прилив–отлив, т. е. от одного прилива до другого, выражается уравнением

W=rgSR2

где r – плотность воды, g – ускорение силы тяжести, S – площадь приливного бассейна, R – разность уровней при приливе.

Как видно из формулы, для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые «бассейны». Мощность ЭС некоторых местах могла бы составить 2…20 МВт.

Первая морская приливная электростанция мощностью 635 кВт была построена в 1913 г. в бухте Ди около Ливерпуля. В 1935 г. приливную электростанцию начали строить в США. Американцы перего-родили часть залива Пассамакводи на восточном побережье, истратили 7 млн долл., но работы пришлось прекратить из-за неудобного для строительства слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподалеку крупная тепловая электростанция да-ла более дешевую энергию.

Аргентинские специалисты предлагали использовать очень высо-кую приливную волну в Магеллановом проливе, но правительство не утвердило дорогостоящий проект.

С 1967 г. в устье реки Ранс во Франции на приливах высотой до 13 м работает ПЭС мощностью 240 тыс. кВт с годовой отдачей 540 тыс. кВт·ч.

Уже разработан целый ряд современных устройств для преобразования энергии приливных течений, один из которых показан на рисунке 10.4. Капитальные затраты на создание подобных устройств в расчете на 1 кВт установленной мощности достаточно высоки.

Прямое преобразование тепловой энергии - student2.ru

Прямое преобразование тепловой энергии - student2.ru

Рисунок 10.4 - Схема электростанции на приливном течении

10.5.Энергияморскихтечений

Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (по-добно ветряным мельницам, «погруженным» в атмосферу).

Важнейшее и самое известное морское течение – Гольфстрим. Его основная часть проходит через Флоридский пролив между полуостро-вом Флорида и Багамскими островами. Ширина течения составляет 60 км, глубина до – 800 м, а поперечное сечение – 28 км2. Энергию Р, которую несет такой поток воды со скоростью 0,9 м/с, можно выразить формулой (в Вт)

Прямое преобразование тепловой энергии - student2.ru

где m – масса воды, кг, r– плотность воды, кг/м3, А – сечение, м2, v – скорость, м/с.

Подставив цифры, получим

 
Прямое преобразование тепловой энергии - student2.ru P=50000 МВт. Если бы мы смогли полностью использовать эту энергию, она была бы эквивалентна суммарной энергии от 50 крупных электростанций по 1000 МВт.

В настоящее время в ряде стран, в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени.

По аналогии с ВЭУ существующие преобразователи энергии течений можно условно разделить на две группы. К первой целесообразно отнести те из них, в основу которых положен принцип преобразования скоростного напора во вращательное движение турбин. Ко второй, менее многочисленной, группе относят преобразователи, основанные на других физических принципах (объемные насосы, упругие преобразователи и др.).

Родоначальником устройств первой группы по праву считают водяное колесо (рисунок 10.5, а). Ленточное колесо (рисунок 10.5, б) оказывается более компактным, требует меньше материалов, менее подвержено воздействию атмосферы. Подобное устройство может быть установлено в потоке на понтонах с таким расчетом, чтобы нижние лопасти входили в воду, а верхние оставались «сухими». Эффективность преобразования скоростного напора повышается за счет того, что сразу несколько лопастей оказываются под воздействием потока. Однако, простое увеличение числа лопастей лен-точного колеса не приведет к существенному увеличению момента на валах.

Прямое преобразование тепловой энергии - student2.ru

Рисунок 10.5 -. Эволюция водяного колеса:

а – колесо-прототип; б – ленточное колесо на плавучем основании; в – ленточное колесо в толще потока;г – ленточное колесо со складными лопастями

На базе ленточного колеса созданы устройства, полностью по-гружаемые в толщу потоков (рисунок 10.5, в, г). Для таких устройств пред-лагается несколько способов уменьшения сопротивления движению ленты во время холостого хода. Это и сооружение воздушной камеры над колесом и применение различных вариантов механизмов складывания лопастей.

10.6 Преобразователиэнергииволн

10.6.1 Преобразователи, отслеживающие профиль волны

Разрмотрим преобразователя типа «колеблющееся крыло», предложенного профессором Эдинбургского университета Стефана Солтера и названного в честь создателя «утка Солтера». Форма преобразователя обеспечивает максимальное извлечение мощности (рисунок 10.6).

Прямое преобразование тепловой энергии - student2.ru Рисунок 10.6 -. «Утка Солтера»: схема преобразования энергии волны

Волны, поступающие слева, заставляют утку колебаться. Цилинд-рическая форма противоположной поверхности обеспечивает отсутст-вие распространения волны направо при колебаниях утки вокруг оси. Мощность может быть снята с оси колебательной системы с таким рас-четом, чтобы обеспечить минимум отражения энергии. Отражая и про-пуская лишь незначительную часть энергии волн (примерно 5 %), это устройство обладает весьма высокой эффективностью преобразования в широком диапазоне частот возбуждающих колебаний (рисунок.10.7).

Прямое преобразование тепловой энергии - student2.ru Рисунок 10.7 - Эффективность «утки Солтера» (диаметр 15 м, ось зафиксирована)

Испытания, проведенные в 1977 году, показали, что рабочая модель океанского преобразователя (50-метровая гирлянда из 20-метровых «уток» общей массой 16 т) для первой английской волновой электростанции работала с КПД около 50 %.

Наиболее серьезными недостатками для «уток Солтера» оказались следующие:

- необходимость передачи медленного колебательного движения на привод генератора;

- необходимость снятия мощности с плавающего на значительной глубине устройства большой протяженности;

- вследствие высокой чувствительности системы к направлению волн необходимость отслеживать изменение их направления для получения высокого КПД преобразования;

- затруднения при сборке и монтаже из-за сложности формы по-верхности «утки».

Другой вариант волнового преобразователя с качающимся эле-ментом – контурный плот Коккерелла. Его модель также в 1/10 величи-ны испытывалась в том же году, что и «утка Солтера», в проливе Со-лент, вблизи г. Саутгемптона. Контурный плот – многозвенная система из шарнирно-соединенных секций (рисунок 10.8). Как и «утка», он устанавливается перпендикулярно к фронту волны и отслеживает ее профиль.

Прямое преобразование тепловой энергии - student2.ru Рисунок 10.8 - Вариант выполнения контурного плота Коккерелла: 1 – колеблющаяся секция; 2 – преобразователь; 3 – тяга; 4 – шарнир

Детальные лабораторные испытания модели плота в масштабе 1/100 показали, что его эффективность составляет около 45 %. Это ниже, чем у «утки» Солтера. Но плот привлекает другим достоинством: близость конструкции к традиционным судостроительным).

10.6.2 Преобразователи, использующие энергию колеблющегося водяного столба

При набегании волны на частично погруженную полость, открытую под водой, столб жидкости в полости колеблется, вызывая изменения давления в газе над жидкостью. Полость может быть связана с ат-мосферой через турбину. Поток может регулироваться так, чтобы проходить через турбину в одном направлении, или может быть использована турбина Уэлса. Уже известны по крайней мере два примера коммерческого использования устройств на этом принципе – сигнальные буи, внедренные в Японии Масудой (рисунок 10.9) и в Великобритании – сотрудниками Королевского университета Белфаста.

Главное преимущество устройств на принципе водяного колеблющегося столба состоит в том, что скорость воздуха перед турбиной может быть значительно увеличена за счет уменьшения проходного се-чения канала. Это позволяет сочетать медленное волновое движение с высокочастотным вращением турбины. Кроме того, здесь создается возможность удалить генерирующее устройство из зоны непосредственного воздействия соленой морской воды.

Прямое преобразование тепловой энергии - student2.ru Рисунок 10. 9. - Схема установки, в которой используется принцип колеблющегося водного столба (разработана в Великобритания, размещается непосредственно на грунте,турбина приводится в действие потоком одного направления):

1 – волновой подъем уровня; 2 – воздушный поток; 3 – турбина; 4 – выпуск воздуха; 5 – направление волны; 6 – опускание уровня; 7 – впуск воздуха.

Наши рекомендации