Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности

20. Расчёт сложной электрической цепи гармонического тока методом узловых потенциалов (напряжений). Составление баланса мощности.

Метод узловых потенциалов
Уравнения, составляемые по этому методу, называются узловыми уравнениями. В качестве неизвестных они содержат потенциалы узлов, причем один из них задается заранее – обычно принимается равным нулю. Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Рис. 1.9. Сложная электрическая цепь

Пусть таким узлом будет узел d: ф d=0. Равенство нулю какой-то точки схемы обычно показывается как ее заземление.
Запишем для каждой ветви выражение закона Ома:

Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru (1.8)

Подставляя формулы (1.8) в систему (1.6) после несложных преобразований получаем следующие уравнения, количество которых на единицу меньше числа узлов:

Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru (1.9)

При решении практических задач указанный вывод не делают, а узловые уравнения записывают сразу, пользуясь следующим правилом.
Потенциал узла, для которого составляется уравнение (например, в первом уравнении последней системы – это узел а), умножается на сумму проводимостей ветвей, присоединенных к этому узлу: ф а (G1+G2+G3).Это произведение записывается в левой части уравнения со знаком плюс. Потенциал каждого соседнего узла (bи с) умножается на проводимости ветвей, лежащих между этим (соседним) узлом и узлом, для которого составляется уравнение.
Эти произведения ф b (G1 + G2) и ф сG3 записываются со знаком минус. В правой части уравнения стоит алгебраическая сумма произведений ЭДС на проводимости тех ветвей, которые присоединены к рассматриваемому узлу: E1G1, E2G2 иE3G3. Эти произведения записываются с плюсом, если ЭДС направлены к узлу, и с минусом, если от узла.
Найдя из (1.9) потенциалы узлов и подставляя их в (1.8), определяем токи ветвей.

21. Расчёт сложной электрической цепи гармонического тока методом эквивалентного генератора. Составление баланса мощности.

Метод эквивалентного генератора
Этот метод основан на сформулированной выше теореме (см. подразд. 1.4) и применяется в тех случаях, когда требуется рассчитать ток в какой-либо одной ветви при нескольких значениях ее параметров (сопротивления и ЭДС) и неизменных параметрах всей остальной цепи.
Сущность метода заключается в следующем. Вся цепь относительно зажимов интересующей нас ветви представляется как активный двухполюсник, который заменяется эквивалентным генератором, к зажимам которого подключается интересующая нас ветвь. В итоге получается простая неразветвленная цепь, ток в которой определяется по закону Ома.
ЭДС ЕЭэквивалентного генератора и его внутреннее сопротивление находятся из режимов холостого хода и короткого замыкания двухполюсника.
Порядок решения задачи этим методом рассмотрим на конкретном числовом примере.
Пример 1.5.В цепи, показанной на рис. 1.20, а, требуется рассчитать ток I3 при шести различных значениях сопротивленияR3 и по результатам расчета построить график зависимостиI3(R3).
Числовые значения параметров цепи: Е1 = 225 В; Е3 = 30 В;R1 = 3 Ом; R2 = 6 Ом.
а) б)
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Рис. 1.20. Схема решения задачи
Р е ш е н и е. а) Расчет режима холостого хода.
Убираем третью ветвь, оставляя зажимы m и n разомкнутыми (рис. 1.21, а). Напряжение между ними, равное UX, находится как падение напряжения на сопротивлении R2:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru 150 В; Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru 150 В.
б) Расчет режима короткого замыкания. Замыкаем накоротко зажимы m и n (рис. 1.21, б). Ток короткого замыкания Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru 75 А.
Внутреннее сопротивление эквивалентного генератора
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru 2 Ом.
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Рис. 1.21. Режимы холостого хода (а) и короткого замыкания (б)
Величину можно найти и другим способом. Оно равно входному сопротивлению двухполюсника при равенстве нулю всех его ЭДС. Если на рис. 1.21, а мысленно закоротить зажимы ЭДСЕ1, то сопротивления R1 и R2 окажутся соединенными параллельно, и входное сопротивление цепи относительно зажимов m и n будет равно Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru 2 Ом.
Ток в полученной неразветвленной цепи (рис. 1.20, б) определяется по закону Ома:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru (1.13)
Подставляя в последнюю формулу требуемые значения сопротивления R3, вычисляем ток и строим график (рис. 1.22).



Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru

Рис. 1.22. Зависимость тока от сопротивления

Данную задачу целесообразно решать именно методом эквивалентного генератора. Применение другого метода, например метода контурных токов, потребует решать систему уравнений столько раз, сколько значений тока необходимо найти. Здесь же всю цепь мы рассчитываем только два раза, определяяЕЭ и , а многократно используем лишь одну простую формулу (1.13).

   

22. Электрические цепи с взаимной индуктивностью. Индуктивно связанные элементы цепи. Потоки самоиндукции и взаимной индукции. Коэффициент связи.

23. Расчёт электрических цепей с последовательным соединением индуктивно­связанных элементов при согласном и встречном включении. Составление уравнений по закону Кирхгофа. Построение векторных диаграмм.

24. Резонанс в последовательной цепи гармонического тока. Частотные характеристики последовательного резонансного контура.

Лекция №11.

25. Переходные процессы в линейных электрических цепях. Основные понятия. Условия возникновения переходных процессов. Законы коммутации. Характеристическое уравнение электрической цепи.

26. Переходные процессы в линейных электрических цепях. Определение начальных условий и постоянных интегрирования в классическом методе расчета. Принужденная и свободная составляющие.

27. Анализ переходных процессов в последовательнойLR-цепи классическим методом. Анализ переходных процессов в цепи R, L

Исследуем, как изменяется ток в цепи с резистором R и катушкой L в пере­ходном режиме. В качестве примера рассмотрим переходной процесс при включении цепи R, L к источнику а) постоянной ЭДС Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru =const и б) переменной ЭДС Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru (рис. 140).
Расчет переходного процесса выполним классическим методом.
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru

а) Включение цепи R, L к источнику постоянной ЭДС Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru .
Общий вид решения для тока: Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Установившаяся составляющая тока: Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru .
Характеристическое уравнение и его корни:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru .
Независимое начальное условие: Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru .
Постоянная интегрирования: Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru .
Окончательное решение для искомой функции:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , где Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru − постоянная времени, численно равная времени, за которое ам­плитуда сво­бодной составляющей затухает в Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru раза. Чем больше Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , тем медленнее затухает переходной процесс. Теоретически затуха­ние свободной составляющей про­должается до бесконечности. Техническое время переходного процесса Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru определя­ется из условия, что за это время свободная составляющая уменьшается до 0,01 от ее первоначального значения:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , откуда Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru .
На рис. 141 представлена графическая диаграмма искомой функции Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru

Для приближенного построения графической диаграммы свободной составляю­щей Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru можно воспользоваться таблицей значений этой функции в интервале времени Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru :

t 0,5 1,0 1,5
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru 0,61 0,37 0,22 0,14 0,05 0,02

Постоянная времени Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru может быть определена из графической диа­граммы функции Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru как отрезок времени Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , по краям которого от­ношение значений функции равно Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru раза (рис. 141).
б) Включение цепи R, L к источнику синусоидальной ЭДС Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Общий вид решения для тока:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Характеристическое уравнение и его корни:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Установившаяся составляющая тока:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , откуда следует Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru ,
где Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru .
Независимое начальное условие: Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Постоянная интегрирования:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , откуда Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Окончательное решение для искомой функции:
Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru
Из анализа решения видно, что амплитуда свободной составляющей А зависит от начальной фазы Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru источника ЭДС. При Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru эта ам­плитуда имеет макси­мальное значение Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , при этом переходной процесс протекает с максималь­ной интенсивностью. При Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru ампли­туда свободной составляющей равна нулю, и переходной процесс в цепи вообще отсутствует. На рис. 142 представлена графическая диаграмма иско­мой функции Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru при Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru , Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru . Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru

28. Анализ переходных процессов в последовательнойRC-цепи классическим методом.

Под переходным (динамическим, нестационарным) процессом или режимом в электрических цепях понимается процесс перехода цепи из одного установившегося состояния (режима) в другое. При установившихся, или стационарных, режимах в цепях постоянного тока напряжения и токи неизменны во времени, а в цепях переменного тока они представляют собой периодические функции времени. Установившиеся режимы при заданных и неизменных параметрах цепи полностью определяются только источником энергии. Следовательно, источники постоянного напряжения (или тока) создают в цепи постоянный ток, а источники переменного напряжения (или тока) – переменный ток той же частоты, что и частота источника энергии.

Переходные процессы возникают при любых изменениях режима электрической цепи: при подключении и отключении цепи, при изменении нагрузки, при возникновении аварийных режимов (короткое замыкание, обрыв провода и т.д.). Изменения в электрической цепи можно представить в виде тех или иных переключений, называемых в общем случае коммутацией. Физически переходные процессы представляют собой процессы перехода от энергетического состояния, соответствующего до коммутационному режиму, к энергетическому состоянию, соответствующему после коммутационному режиму.

Переходные процессы обычно быстро протекающие: длительность их составляет десятые, сотые, а иногда и миллиардные доли секунды. Сравнительно редко длительность переходных процессов достигает секунд и десятков секунд. Тем не менее изучение переходных процессов весьма важно, так как позволяет установить, как деформируется по форме и амплитуде сигнал, выявить превышения напряжения на отдельных участках цепи, которые могут оказаться опасными для изоляции установки, увеличения амплитуд токов, которые могут в десятки раз превышать амплитуду тока установившегося периодического процесса, а также определять продолжительность переходного процесса. С другой стороны, работа многих электротехнических устройств, особенно устройств промышленной электроники, основана на переходных процессах. Например, в электрических нагревательных печах качество выпускаемого материала зависит от характера протекания переходного процесса. Чрезмерно быстрое нагревание может стать причиной брака, а чрезмерно медленное отрицательно оказывается на качестве материала и приводит к снижению производительности.

5.1 Причины возникновения переходных процессов.
Законы коммутации

В общем случае в электрической цепи переходные процессы могут возникать, если в цепи имеются индуктивные и емкостные элементы, обладающие способностью накапливать или отдавать энергию магнитного или электрического поля. В момент коммутации, когда начинается переходный процесс, происходит перераспределение энергии между индуктивными, емкостными элементами цепи и внешними источниками энергии, подключенными к цепи. При этом часть энергия безвозвратно преобразуется в другие виды энергий (например, в тепловую на активном сопротивлении).

После окончания переходного процесса устанавливается новый установившийся режим, который определяется только внешними источниками энергии. При отключении внешних источников энергии переходный процесс может возникать за счет энергии электромагнитного поля, накопленной до начала переходного режима в индуктивных и емкостных элементах цепи.

Изменения энергии магнитного и электрического полей не могут происходить мгновенно, и, следовательно, не могут мгновенно протекать процессы в момент коммутации. В самом деле, скачкообразное (мгновенное) изменение энергии в индуктивном и емкостном элементе приводит к необходимости иметь бесконечно большие мощности p = dW/dt, что практически невозможно, ибо в реальных электрических цепях бесконечно большой мощности не существует.

Таким образом, переходные процессы не могут протекать мгновенно, так как невозможно в принципе мгновенно изменять энергию, накопленную в электромагнитном поле цепи. Теоретически переходные процессы заканчиваются за время t→∞. Практически же переходные процессы являются быстропротекающими, и их длительность обычно составляет доли секунды. Так как энергия магнитного WМ и электрического полей WЭ описывается выражениями

Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru Расчёт сложной электрической цепи гармонического тока методом контурных токов. Составление баланса мощности - student2.ru ,

то ток в индуктивности и напряжение на емкости не могут изменяться мгновенно. На этом основаны законы коммутации.

Первый закон коммутации состоит в том, что ток в ветви с индуктивным элементом в начальный момент времени после коммутации имеет то же значение, какое он имел непосредственно перед коммутацией, а затем с этого значения он начинает плавно изменяться. Сказанное обычно записывают в виде iL(0-) = iL(0+), считая, что коммутация происходит мгновенно в момент t = 0.

Второй закон коммутации состоит в том, что напряжение на емкостном элементе в начальный момент после коммутации имеет то же значение, какое оно имело непосредственно перед коммутацией, а затем с этого значения оно начинает плавно изменяться: UC(0-) = UC(0+).

Следовательно, наличие ветви, содержащей индуктивность, в цепи, включаемой под напряжение, равносильно разрыву цепи в этом месте в момент коммутации, так как iL(0-) = iL(0+). Наличие в цепи, включаемой под напряжение, ветви, содержащей разряженный конденсатор, равносильно короткому замыканию в этом месте в момент коммутации, так как UC(0-) = UC(0+).

Однако в электрической цепи возможны скачки напряжений на индуктивностях и токов на емкостях.

В электрических цепях с резистивными элементами энергия электромагнитного поля не запасается, вследствие чего в них переходные процессы не возникают, т.е. в таких цепях стационарные режимы устанавливаются мгновенно, скачком.

В действительности любой элемент цепи обладает каким-то сопротивлением r, индуктивностью L и емкостью С, т.е. в реальных электротехнических устройствах существуют тепловые потери, обусловленные прохождением тока и наличием сопротивления r, а также магнитные и электрические поля.

Переходные процессы в реальных электротехнических устройствах можно ускорять или замедлять путем подбора соответствующих параметров элементов цепей, а также за счет применения специальных устройств.

Наши рекомендации