Универсальный закон электромагнитной индукции
Изменение магнитного потока, пронизывающего контур, может возникнуть не только в результате его движения в магнитном поле, но и при изменении величины индукции магнитного поля, пронизывающего контур. Закономерен вопрос: какова природа сторонних сил в этом случае? Свободные электроны в проводнике находятся в хаотическом движении, на каждый электрон действует магнитная сила Лоренца, но так как движение электронов хаотическое, то сумма всех магнитных сил Лоренца, действующих на отдельные электроны, равна нулю. Поэтому магнитная сила Лоренца не может играть роль сторонней силы в случае, когда проводник неподвижен. Заставить двигаться заряды в неподвижном проводнике может только сила Кулона.
Анализируя явление электромагнитной индукции, Максвелл пришел к выводу, что причина появления электродвижущей силы индукции заключается в возникновении электрического поля при изменении магнитного потока через поверхность, ограниченную контуром. Следовательно, и индукционный ток также возникает под действием электрического поля, создающегося за счет изменения магнитного поля. Как всякое электрическое поле, оно совершает работу по перемещению заряда в цепи. Однако здесь имеются и свои принципиальные особенности. Существенной особенностью этого поля является то, что оно не является электростатическим. Силовые линии электростатического поля всегда разомкнуты, они начинаются и заканчиваются на электрических зарядах или в бесконечности, и в соответствии с этим работа этих сил на замкнутом контуре равна нулю. Поэтому электростатическое поле не может поддерживать движение зарядов по замкнутому контуру и, следовательно, не может привести к возникновению электродвижущей силы. Электрическое поле, возникающее в процессе изменения магнитного поля, не связано с каким-либо распределением электрических зарядов. Силовые линии электрического поля, связанного с переменным магнитным полем, не имеют начала и конца – они замкнуты наподобие силовых линий магнитного поля. Такое поле называется вихревым. Вихревое электрическое поле, возникающее в процессе электромагнитной индукции, создает электрический ток в замкнутом проводнике, следовательно, оно способно вызывать движение электронов по замкнутым траекториям, при этом сторонними силами являются силы вихревого электрического поля. Работа сил этого поля на замкнутой траектории не равна нулю. Именно этой работой определяется электродвижущая сила индукции в замкнутом контуре.
Следует подчеркнуть, что вихревое электрическое поле при изменении магнитного потока существует независимо от того, есть ли в этом месте замкнутый контур. Контур является лишь индикатором, с помощью которого можно обнаружить наличие вихревого электрического поля.
Таким образом, одним из основных положений электромагнитной теории Максвелла является утверждение, согласно которому всякое изменение магнитного поля вызывает появление вихревого электрического поля. Переменное магнитное поле неразрывно связано с этим электрическим полем, и поэтому говорят, что в этом случае мы имеем дело с электромагнитным полем
Явление самоиндукции
Важным частным случаем явления электромагнитной индукции называют явление самоиндукции. В этом случае изменяющийся магнитный поток через замкнутый контур создается переменным током в самом контуре.
Рассмотрим тонкий замкнутый проводник, по которому течет ток силой . Этот ток создает пронизывающий контур магнитный поток. В соответствии с законом Био–Савара магнитная индукция пропорциональна силе тока, вызвавшего поле. Отсюда вытекает, что ток и создаваемый им магнитный поток пропорциональны друг другу:
.
Коэффициент пропорциональности называется индуктивностью контура или коэффициентом самоиндукции. Линейная зависимость от наблюдается только в отсутствие ферромагнетиков, в противном случае будет зависеть от . Индуктивность зависит от геометрии контура (то есть его формы и размеров), а также от магнитных свойств окружающей среды. Если виток имеет жесткую форму и вблизи него нет ферромагнетиков, индуктивность является постоянной величиной.
За единицу индуктивности в системе единиц СИ принимается индуктивность такого проводника, у которого при силе тока в нем в 1 А возникает сцепленный с ним поток, равный 1 Вб. Эту единицу называют генри (Гн):
.
Для примера вычислим индуктивность идеального соленоида, пренебрегая при этом краевыми эффектами. Пусть – длина соленоида, – число витков на единицу длины, – площадь одного витка. Индукция магнитного поля внутри соленоида равна . Тогда магнитный поток, пронизывающий соленоид, будет равен , отсюда
.
Если ток в проводнике меняется, то меняется и магнитный поток, пронизывающий контур, вследствие чего в витке индуцируется электродвижущая сила самоиндукции . Если при этом индуктивность контура L остается неизменной, то электродвижущая сила самоиндукции, согласно основному закону электромагнитной индукции, имеет вид
. | (6.3) |
Знак минус в этой формуле обусловлен правилом Ленца.
В рассматриваемом случае причиной, вызывающей электродвижущую силу самоиндукции, является изменение тока в цепи. Если ток в цепи возрастает, то возрастает и индукция магнитного поля, которое он создает, а следовательно, возрастает магнитный поток через контур. Поэтому, согласно правилу Ленца, ток самоиндукции должен быть направлен так, чтобы его магнитное поле препятствовало такому изменению магнитного потока, то есть навстречу основному току. И наоборот, при уменьшении силы тока в цепи направление индукционного тока будет совпадать с направлением основного тока.
Явление самоиндукции можно сопоставить с явлением инерции в механике. Инерция приводит к постепенному уменьшению скорости движения тел, даже при мгновенном приложении силы. Самоиндукция препятствует мгновенному изменению тока в электрической цепи. Поэтому индуктивность катушки L в электрической цепи играет ту же роль, что и масса m, являющаяся мерой инерции в механике.
Явление самоиндукции можно наблюдать на опыте, схема которого представлена на рис. 6.4. При замыкании цепи лампочка , которая подключена к источнику тока через реостат R, вспыхивает мгновенно. Тогда как лампочка , подключенная к источнику через катушку с большой индуктивностью, загорается с большим запозданием. Это объясняется тем, что в катушке в начальный момент возникает большая электродвижущая сила самоиндукции, которая в соответствии с правилом Ленца препятствует нарастанию тока в этой цепи. При размыкании цепи магнитный поток убывает, поэтому возникает ток самоиндукции, который препятствует уменьшению тока в катушке. Так как цепь уже разомкнута, индукционный ток будет течь через гальванометр (рис. 6.5), причем в направлении, противоположном первоначальному, что видно по отклонению стрелки гальванометра.
Электродвижущая сила самоиндукции, возникающая при выключении тока, может быть велика и поэтому опасна. Индуктивность большого электромагнита, применяемого для исследований, может составлять, например, 10 Гн. Ток в катушке может достигать 100 А. Если ток в цепи прервать с помощью выключателя или если будет случайный разрыв в цепи, то возникнет электродвижущая сила, равная , даже если , . В действительности это время гораздо меньше, и поэтому электродвижущая сила самоиндукции значительно больше. Возникающая при этом большая разность потенциалов, сосредоточенная на выключателе или разрыве, может привести к нагреву и плавлению контактов. Этим объясняется опасность резкого отключения от силовой сети мощных электродвигателей, обмотки которых обладают большой индуктивностью. Их отключают, плавно уменьшая ток с помощью реостатов.