Последствия короткого замыкания
Последствия коротких замыканий.
При возникновении коротких замыканий в системе электроснабжения ее общее сопротивление уменьшается, что приводит к увеличению токов в ее ветвях по сравнению с токами нормального режима, а это вызывает снижение напряжения отдельных точек системы электроснабжения, которое особенно велико вблизи места короткого замыкания.
В зависимости от места возникновения и продолжительности повреждения его последствия могут иметь местный характер или отражаться на всей системе электроснабжения.
При большой удаленности короткого замыкания величина тока короткого замыкания может составлять лишь незначительную часть номинального тока питающих генераторов и возникновение такого короткого замыкания воспринимается ими как небольшое увеличение нагрузки. Сильное снижение напряжения получается только вблизи места короткого замыкания, в то время как в других точках системы электроснабжения это снижение менее заметно. Следовательно, при рассматриваемых условиях опасные последствия короткого замыкания проявляются лишь в ближайших к месту аварии частях системы электроснабжения.
Ток короткого замыкания, являясь даже малым по сравнению с номинальным током генераторов, обычно во много раз превышает номинальный ток ветви, где произошло короткое замыкание. Поэтому и при кратковременном протекании тока короткого замыкания он может вызвать дополнительный нагрев токоведущих элементов и проводников выше допустимого.
Токи короткого замыкания вызывают между проводниками большие механические усилия, которые особенно велики в начале процесса короткого замыкания, когда ток достигает максимального значения. При недостаточной прочности проводников и их креплений могут иметь место разрушения механического характера.
Внезапное глубокое снижение напряжения при коротком замыкании отражается на работе потребителей. В первую очередь это касается двигателей, так как даже при кратковременном понижении напряжения на 30-40% они могут остановиться (происходит опрокидывание двигателей). Опрокидывание двигателей тяжело отражается на работе промышленного предприятия, так как для восстановления нормального производственного процесса требуется длительное время и неожиданная остановка двигателей может вызвать брак продукции предприятия.
Таким образом, последствия коротких замыканий следующие:
Механические и термические повреждения электрооборудования.
Возгорания в электроустановках.
Снижение уровня напряжения в сети, ведущее к уменьшению вращающего момента электродвигателей, их торможению, снижению производительности или даже к опрокидыванию их.
Выпадение из синхронизма отдельных генераторов, электростанций и частей электрической системы и возникновение аварий, включая системные аварии.
Электромагнитное влияние на линии связи, коммуникации и т.п.
Синхронный двигатель, достоинства и недостатки.
Синхронный двигатель имеет ряд преимуществ перед асинхронным:
Достоинства:
1. Высокий коэффициент мощности cosФ=0,9.
Возможность использования синхронных двигателей на предприятиях для увеличения общего коэффициента мощности.
3. Высокий КПД он больше чем у асинхронного двигателя на (0,5-3%) это дастигается за счёт уменьшения потерь в меди и большого CosФ.
Обладает большой прочностью обусловленной увеличенным воздушным зазором.
Вращающий момент синхронного двигателя прямо пропорционален напряжению в первой степени. Т.е синхронный двигатель будет менее чувствителен к изменению величины напряжения сети.
Недостатки синхронного двигателя:
Сложность пусковой аппаратуры и большую стоимость.
Синхронные двигатели применяют для приведения в движение машин и механизмов, не нуждающихся в изменении частоты вращения, а так же для механизмов у которых с изменением нагрузки частота вращения остаётся постоянной: (насосы, компрессоры, вентиляторы.)
Пуск синхронного двигателя.
В виду отсутствия пускового момента в синхронном двигателе для пуска его используют следующие способы:
Пуск с помощью вспомогательного двигателя.
Асинхронный пуск двигателя.
Пуск с помощью вспомогательного двигателя.
Пуск в ход синхронного двигателя с помощью вспомогательного двигателя может быть произведен только без механической нагрузки на его валу, т.е. практически вхолостую. В этом случае на период пуска двигатель временно превращается в синхронный генератор, ротор которого приводится во вращение небольшим вспомогательным двигателем. Статор этого генератора включается параллельно в сеть с соблюдением всех необходимых условий этого соединения. После включения статора в сеть вспомогательный приводной двигатель механически отключается. Этот способ пуска сложен и имеет к тому же вспомогательный двигатель.
Асинхронный пуск двигателя.
Наиболее распространенным способом пуска синхронных двигателей является асинхронный пуск, при котором синхронный двигатель на время пуска превращается в асинхронный. Для возможности образования асинхронного пускового момента в пазах полюсных наконечников явнополюсного двигателя помещается пусковая короткозамкнутая обмотка. Эта обмотка состоит из латунных стержней, вставленных в пазы наконечников и соединяемых накоротко с обоих торцов медными кольцами.
При пуске в ход двигателя обмотка статора включается в сеть переменного тока. Обмотка возбуждения (3) на период пуска замыкается на некоторое сопротивление Rг, рис. 45, ключ К находится в положении 2, сопротивление Rг = (8-10)Rв. В начальный момент пуска при S=1, из-за большого числа витков обмотки возбуждения, вращающее магнитное поле статора наведет в обмотке возбуждения ЭДС Ев, которая может достигнуть весьма большого значения и если при пуске не включить обмотку возбуждения на сопротивление Rг произойдет пробой изоляции.
Рис. 45 Рис. 46.
Процесс пуска синхронного двигателя осуществляется в два этапа. При включении обмотки статора (1) в сеть в двигателе образуется вращающее поле, которое наведет в короткозамкнутой обмотке ротора (2) ЭДС. Под действием, которой будет протекать в стержнях ток. В результате взаимодействия вращающего магнитного поля с током в коротко замкнутой обмотке создается вращающий момент, как у асинхронного двигателя. За счет этого момента ротор разгоняется до скольжения близкого к нулю (S=0,05), рис. 46. На этом заканчивается первый этап.
Чтобы ротор двигателя втянулся в синхронизм, необходимо создать в нем магнитное поле включением в обмотку возбуждения (3) постоянного тока (переключив ключ К в положение 1). Так как ротор разогнан до скорости близкой
к синхронной, то относительная скорость поля статора и ротора небольшая. Полюса плавно будут находить друг на друга. И после ряда проскальзываний противоположные полюса притянутся, и ротор втянется в синхронизм. После чего ротор будет вращаться с синхронной скоростью, и частота вращения его будет постоянной, рис. 46. На этом заканчивается второй этап пуска.
Электромагнитная мощность – это мощность, которая передается с индуктора на статорную обмотку. Так как потери в обмотке статора, как правило, невелики, то и невелики потери в стали статора. Поэтому практически считают, что электромагнитная мощность равна полезной отдаваемой мощности:
Рэм ~ Рr1 = mUIcosφ, r = 0 (1)
Для вывода формулы электромагнитной мощности воспользуемся преобразованной диаграммой для явнополюсной машины, рис. 281
Рис. 281
Выразим угол φ через ψ и θ.