Характеристики электроизоляционных лаков, эмалей и компаундов

Основа Марка Цвет р, Ом * м МВ/м Режим сушки/отверж­дения Применение
Лат:            
масляно- БТ-988 1012—1013 Горячая Пропиточный
битумный           и покровный
порлизфирпый ПЭ-936 -_ 1012 Горячая Клеящий и
            пропиточный
глифталевый МЛ-92 -- 1012—[013 65—70 Горячая Пропиточный
            и покровный
Эмали:            
эпоксидная ЭП-91 Зеленый 1012—1013 50—70 Горячая Электрические
            машины и
            аппараты
кремний- КО-936 Розовый 1011- 1012 40 -50 Горячая Электрические
органическая           машины и
            аппараты
перхлор- ПХВ-23 Серый 109—1010 25- -40 Холодная Защитная
виниловая           эмаль
Компаунды:            
полиуретан ВИЛАД13-1   1010 Горячее Заливочный
битумы МБ-70 109—1010 15—18 Не Заливочный
          отверждается  
эпоксидно- К-115 1012 Горячее Пропиточный
полиэфирный           и заливочный

Электроизоляционные бумаги и картоны относятся к достаточно распространенному виду материалов — волокнистых. Достоинствами таких материалов являются дешевизна, доступность, достаточная механи­ческая прочность, гибкость, технологичность, а их недостатками — невы­сокая электрическая прочность (из-за отсутствия сплошности структуры) и гигроскопичность (удельное сопротивление бумаги с влажностью 3 % примерно в 106 раз меньше удельного сопротивления абсолютно сухой бумаги).

Бумага и картон — это материалы растительного происхождения, в основе которых лежит древесная целлюлоза. Она представляет собой полярное высокомолекулярное соединение, перерабатываемое в электро­изоляционную бумагу при варке древесины в растворах, содержащих едкий натр №ОН.

Электроизоляционные бумаги делятся на кабельные, конденсаторные, пропиточные, намоточные, микалентные, крепированные.

Кабельная бумага составляет основную изоляцию кабелей высокого напряжения. После намотки бумагу пропитывают изоляционным маслом. Все обозначения кабельных бумаг начинают с буквы К (кабельная) — К, КМ, КВ, КВУ, КВМ, КВМУ, где буквы М, В и У означают соответственно многослойная, высоковольтная, уплотненная. Некоторые кабельные бумаги служат для намотки изоляционных остовов высоковольтных вводов.

Конденсаторная бумага используется в качестве основного диэлектрика в бумажных конденсаторах, где ее также пропитывают жидким диэлектриком. Эта бумага выпускается в рулонах и бывает следующих видов: КОН — конденсаторная среднего качества, МКОН — с уменьшенными диэлект­рическими потерями (в том числе с пониженной плотностью 800 кг/м3), СКОН и ЭМКОН — с повышенной прочностью и малым числом токопро-водящих включений.

Пропиточная бумага марки ЗИП предназначена для изготовления гетинакса.

Намоточная бумага (ЭН) применяется для изготовления электроизоля­ционных намотанных изделий: цилиндров и изоляционных трубок для трансформаторов, электрических аппаратов и проходных изоляторов. Эта бумага может быть покрыта с одной стороны электроизоляционным лаком.

В качестве подложки для микаленты используют микалентную бумагу, на которую наклеивают листочки слюды. Такая бумага обеспечи­вает гибкость микаленты, повышает ее механическую прочность. Для изготовления микалентной бумаги применяют длинноволокнистый хло­пок, причем волокна ориентированы преимущественно в направлении длины полотна бумаги.

Крепированная бумага, имеющая на поверхности креп (гофрировку), нанесенный поперек ее полотна, используется для изолирования отводов и мест соединений в обмотках трансформаторов и других маслонаполнен-ных электрических устройств, а также при изготовлении остовов вводов.

Применение крепированной бумаги взамен дорогостоящих маслостойких лакотканей дает большой экономический эффект без снижения электри­ческой прочности изоляции выводов.

Электроизоляционные картоны отличаются от бумаг в основном тол­щиной, поскольку технология их получения одинакова.

Картоны изготовляют из древесной или хлопковой целлюлозы и выпускают двух типов: воздушные (более твердые и упругие) для работы на воздухе — прокладки для пазов электрических машин, каркасы кату­шек, шайбы и масляные (более рыхлой структуры и мягкие) для работы в жидкости, в основном в трансформаторном масле.

Свойства электроизоляционных бумаг и картонов представлены в табл. 14.9.

Лакоткани представляют собой гибкие рулонные материалы, тканевая основа которых пропитана электроизоляционным лаком. В этом случае ткань обеспечивает достаточно высокую механическую прочность, а лак — электрическую. В качестве тканевой основы применяют: хлопчатобумаж­ную (перкаль), капроновую (эксцельсиор), шелковую, а также стекло­ткань. Шелковые ткани по сравнению с хлопчатобумажными дороже, но зато тоньше, прочнее и обладают повышенными электрическими свой­ствами. Эти два вида лакотканей, так же как и капроновая, относятся к числу материалов класса нагревостойкости А; использование стеклотка­ней может повысить класс нагревостойкости до Н.

По роду пропитывающего лака наиболее распространенные лакоткани подразделяют на светлые (желтые) — на масляных лаках и черные — на масляно-битумных лаках. Кроме того, используют эскапоновые, крем-нийорганические, полиэфирные лаки и другие составы.

Светлые лакоткани относительно стойки к действию органических растворителей, однако, имеют повышенную склонность к тепловому старению.

Черные лакоткани имеют более высокую электрическую прочность, меньшую гигроскопичность, однако менее стойки к действию органиче­ских растворителей.

Таблица 14.9

Электроизоляционные бумаги и картоны      
Наименование Номинальная толщина Плотность, кг/м-1 tgδ Епр, МВ/м
Конденсаторная бумага 4—30 мкм 750—1340 (1,2—3,2) 10-4 20—52
Кабельная бумага 80—170 мкм 520—1150 (1,9—2,6)10-4  
Трансформаторная бумага 80—120 мкм 720—1150 6,7—9,0
Электрокартон для работы 0,1—3,0 мм 950—1250 8—13
в воздухе        
Электрокартон для работы 1,0—6,0 мм 880—1200 (1—6) 10-2 10—12
в жидкости        

Некоторые параметры лакотканей приведены ниже:
Вид лакоткани ε,. р, Ом • м tgδ

Хлопчатобумажна 4,1 - 4,6 1011 0,06 - 0,175

Шелковая............. 3,8 - 4,5 1011 - 1012 0,04 - 0,08

Стеклянная........... 3,0 - 4,4 109 - 1012 0,002 - 0,08

Капроновая........... 3,9 - 4,4 1011 - 1012 0,042 - 0,085

Лакоткани применяются для изоляции в электрических машинах, аппа­ратах, кабельных изделиях в виде обмоток, оберток, прокладок, а также для наружной изоляции катушек и отдельных групп проводов, В боль­шинстве случаев их используют в виде лент, вырезаемых под углом 45° по отношению к основе, что обеспечивает наибольшую эластичность.

Электроизоляционные ленты, трубки и помотанные изделия также широко применяются в различных видах изоляции. Липкие изоляцион­ные ленты чаще всего изготовляют на основе хлопчатобумажных или стекловолокнистых лент, а также на основе лент из поливинилхлоридного пластиката. В последнее время выпускаются липкие ленты из полиэти­лена (марки ПЛ), фторопласта.

Прорезиненная хлопчатобумажная лента изготовляется из хлопчато­бумажной ткани (типа миткаль), пропитанной вязким резиновым соста­вом, который устраняет гигроскопичность. Она применяется при монтаж­ных работах для изоляции мест соединений проводов в сетях и устройствах низкого напряжения.

Широко применяется в производстве электромонтажных работ липкая ПВХ лента, изготовленная из светотермостойкого ПВХ пластиката, на одну сторону которого нанесен липкий состав. Нагревостойкость ее непревышает 60 °С, а холодостойкость — минус 30 °С. Лента обычно светло-синего цвета, эластична, имеет хорошие механические свойства и удовлетворительную адгезию к металлам.

Липкую нагревостойкую стеклоленту изготовляют из стеклянной ленты, пропитанной нагревостойким кремнийорганическим лаком. Она служит для изоляции лобовых частей обмоток электрических машин, а также аппаратов с высокими рабочими температурами.

На основе кремнийорганической резины изготовляют самослипающу­юся термостойкую ленту ЛЭТСАР красного цвета, имеющую улучшен­ные электрические характеристики. Лента термо-, влаго- и маслостойка, а также устойчива к действию ультрафиолетовых лучей и озона.

Хлопчатобумажная киперная или тафтяная лента предназначена для подмоток катушек и обмоток, изолировки жил кабелей с пропиткой или промазкой лаком. Она гигроскопична, горюча, имеет белый цвет.

Электроизоляционные трубки служат для изоляции выводных концов и мест соединений, защиты от действия света, воздуха и температуры, для восстановления некоторых видов оболочек. Изготовляют их из хлоп- чатобумажной пряжи, натурального и лавсанового шелка, капроновых и стеклянных нитей, ПВХ пластиката, фторорганической и кремнийоргани-ческой резины, фторопласта.

Хлопчатобумажные лакированные {линоксиноеые) трубки представ­ляют собой трубки (чулки) из пряжи, пропитанной масляным лаком.

Из лавсанового шелка, пропитанного полиэфирными лаками, изготов­ляют лавсановые трубки (чулки). Эти трубки обладают большей механи­ческой прочностью и стойкостью к истиранию, чем линоксиновые. Рабо­чий диапазон температур их может быть расширен до 130 °С.

Лакированные стекловолокнистые трубки изготовляют на основе стекловолокнистой пряжи, пропитанной полиуретановым, эпоксидным или кремнийорганическим лаком. Кроме того, на их поверхность может быть нанесен слой кремнийорганической резины. Они менее эластичны, чем линоксиновые и лавсановые, но имеют высокую влагостойкость и повышенную рабочую температуру (до 180 °С).

Для изолирования мест соединения и оконцевания проводов и кабелей на различные напряжения, увязывания жгутов электропроводов, предох­ранения паяных соединений от загрязнения применяют термоусаживае-мые трубки, выполняемые на основе так называемого «эффекта памяти» полимеров: макромолекулы сшитого полимера, деформированные при температуре, близкой к температуре плавления, и зафиксированные в этом состоянии резким охлаждением, при повторном нагреве возвраща­ются к равновесному состоянию. При этом восстанавливаются размеры и формы изделия.

Отечественной промышленностью серийно выпускаются термоусажи-ваемые трубки на основе полиэтилена и фторкаучуков. В последнее время разработаны трубки из ПВХ пластиката и из черного полиэтилена — шланговые трубки.

Трубки из ПВХ пластиката обладают масло- и бензостойкостью, не распространяют горения и могут быть окрашены в красный, зеленый, синий, черный, белый и желтый цвета, что отражается в их маркировке.

Намотанные изделия по существу отличаются от электроизоляцион­ных трубок лишь размерами, поскольку к этому виду электрической изо­ляции относятся трубки с внутренним диаметром не менее 6 мм, цилин­дры, а также стержни. Изготовляют их из бумаги, ткани и стеклотканей, пропитанных бакелитовыми, эпоксидными или кремнийорганическими связующими. Все виды намотанных изделий можно разделить на бумажно-бакелитовые, текстолитовые на бакелитовом связующем, стек-лотекстолитовые на эпоксидном связующем и стеклотекстолитовые нагревостойкие.

Цилиндры обозначаются первой буквой Ц, трубки — Т, втулки — В, кольца — К; стержни не имеют буквенного обозначения.

В отличие от большинства рассмотренных ранее материалов неоргани­ческие вещества сложнее по составу. В них могут входить кислород, алю-

миний и другие металлы, кремний и т.д. Неорганические материалы имеют более высокую нагрев о стойкость, чем органические, однако чаще всего не обладают гибкостью и эластичностью, хрупки, поэтому применяются в основном там, где требуется обеспечить высокую рабочую температуру.

Керамическими материалами (керамикой) называют материалы, из которых могут быть изготовлены изделия различной формы, подвергае­мые в дальнейшем обжигу при высокой температуре. В результате обжига в сформованной керамической массе происходят сложные физико-хими­ческие процессы, и материал становится камнеподобным, который можно обрабатывать только абразивами. При этом керамическое изделие приоб­ретает и другие необходимые свойства.

По назначению керамические материалы разделяют на пять основных групп — изоляторная, конденсаторная, сегнетоэлектрическая, полупро­водниковая и магнитная керамика.

С точки зрения энергетики и электротехники наибольший интерес представляет изоляторная и конденсаторная керамика, обладающая такими достоинствами, как атмосферостойкость, стойкость к действию поверхностных разрядов, механическая прочность, хорошие изоляцион­ные свойства и долговечность.

Одним из широко применяемых электрокерамических материалов является электротехнический фарфор (электрофарфор). Это сложный по технологии получения материал, основу которого (около 50 %) состав­ляют глинистые вещества (прежде всего каолин), а 25 % - «отошающие» материалы (кварц, полевой шпат и другие минералы), делающие массу менее липкой и уменьшающие усадку. Изготовленные и высушенные фар­форовые изделия покрывают глазурью, состав которой отличается от состава фарфоровой массы большим содержанием стеклообразующих компонентов (кварц, полевой шпат, доломит и др.)- Затем фарфоровые изделия обжигают, при этом глазурь расплавляется и покрывает поверх­ность фарфора гладким блестящим слоем, который защищает его от про­никновения внутрь влаги, повышает механическую прочность на 10 - 15 %, улучшает внешний вид, уменьшает ток утечки по поверхности и повышает напряжение перекрытия изоляционных конструкций.

Структурно готовый фарфор состоит из кристаллов муллита и кварца, промежутки между которыми заполнены стеклообразным материалом.

Фарфор применяется для изготовления различных электрических изо­ляторов и покрышек высоковольтных вводов.

Ультрафарфор различных марок, применяемый для высокочастотных керамических конденсаторов, обладает высокими электроизоляционными свойствами, а также механической прочностью (примерно в 2 раза выше, чем у электрофарфора).

Другим керамическим материалом является стеатит, изготовляемый на основе талька, стеклообразующих и глинистых материалов, а также безглинистый стеатит, где пластификатором является парафин. В отличие

от электрофарфора он обладает более высокими электроизоляционными свойствами и механической прочностью. Кроме того, при нагреве изоля­ционные свойства стеатита ухудшаются медленнее (до 250 °С изменений практически не происходит). Однако этот материал более дорогой, чем электрофарфор, и менее термостоек.

Стеатит применяется как высоковольтный и высокочастотный мате­риал для изготовления ламповых панелей, осей конденсаторов, каркасов катушек и т.п.

Конденсаторные керамические материалы отличаются от изолятор­ных большей диэлектрической проницаемостью, что позволяет изготов­лять конденсаторы большой емкости и сравнительно малых габаритов, не нуждающихся в защитных корпусах и оболочках. Эти материалы наряду с высокой диэлектрической проницаемостью имеют хорошие изоляцион­ные свойства. К ним относят материалы, содержащие диоксиды титана, олова и циркония, а также оксиды щелочноземельных материалов.

Для изготовления электрических конденсаторов большой емкости используют сегнетокерамику, для которой характерна зависимость диэлект­рической проницаемости от температуры и напряженности электричес­кого поля, в котором находится диэлектрик. Диэлектрическая проницае­мость у сегнетокерамики может достигать несколько тысяч единиц.

Из полупроводниковой керамики изготовляют терморезисторы, а из магнитной — ферриты.

Стекла — неорганические вещества, представляющие собой сложные системы различных оксидов, причем главным стеклообразующим веще­ством служит кварцевый песок, который содержит 98 % SiO2- Из-за содержания в своем составе кварцевого песка стекла являются дешевым материалом и называются силикатными.

Свойства стекол во многом зависят от их состава и режима тепловой обработки. Например, если стекло изготовить из одного кварцевого песка (кварцевые стекла), оно будет обладать очень высокими электрическими характеристиками, термостойкостью и иметь очень малый температурный коэффициент линейного расширения.

Электротехнические стекла разделяют по назначению или химиче­скому составу.

По назначению стекла бывают:

Конденсаторные — диэлектрик конденсаторов, применяемых в высо­ковольтных фильтрах, импульсных генераторах, колебательных контурах высокочастотных устройств;

установочные -— для изготовления установочных деталей, изоляторов (телеграфных, антенных, опорных, проходных), бус и т.п.;

ламповые — для баллонов и ножек осветительных ламп, электронных приборов.

Для изготовления пластмассы горячей прессовки — микалекса — при­меняются специальные стекла с наполнителем.

По химическому составу стекла разделяют на следующие группы:

щелочные с большим содержанием щелочных оксидов. К ним относят обыкновенное оконное, бутылочное и посудное стекло, а также стекло типа «пирекс», стойкое к температурам и имеющее низкий температур­ный коэффициент линейного расширения;

щелочные с большим содержанием тяжелых оксидов. К ним относят флинты (содержащие РЬО) и кроны (содержащие ВаО), имеющие повы­шенные электрические характеристики. Эти стекла используют в оптике, а также в качестве электроизоляционных (конденсаторы, изоляторы и т.п.);

малощелочные с содержанием до 5 % щелочных оксидов. Эти стекла применяют для изготовления стеклянных изоляторов высокого напряжения;

бесщелочные с содержанием щелочных оксидов до 2 % или отсут­ствием этих оксидов (кварцевое стекло). Используют их для оптических, специальных целей, а также для изготовления стеклянного волокна (изо­ляционные стеклоткани).

Стекло для изготовления световодов и волоконнооптических кабелей, применяемых на ЛЭП, изготавливается на основе плавленого кварца с легирующими добавками (оксид бора, фтор, оксиды германия, фосфора и др.), а также на основе халькогенидных соединений (типичные предста­вители — сульфид и селенид мышьяка) и на основе фторидов (циркония, гафния, бария, редкоземельных элементов).

Промежуточное положение между стеклами и керамикой занимают ситаллы, непрозрачные материалы, изготовляемые кристаллизацией стекол различного состава. Эти материалы применяют для изготовления конструк­ционных, строительных и ответственных радиоэлектронных изделий.

Некоторые свойства керамики и стекол представлены в табл. 14.10.

Таблица 14.10

Свойства керамики и стекла

               
Наименование Плотность, кг/м3 Прочность на растяжение, МПа Прочность на сжатие, МПа   р, Ом ■ м   Епр, МВ/м
Электро- 2200 — 30—60 300—500 5—8 109—1012 0,022- 30—32
фарфор         0,03  
Ультра- 3200— 50 -60 550—600 8 -8,8 1012—1014 0,0003— 30—36
фарфор         0,0012  
Стеатит 60—70 500—600 6,5—7 1013—1014 0,001 — 40—42
            0,003  
Кордиерит 1900— 25—35 4—6 109—1010 0,025 — 4.5—10
          0,01  
Стекло для 2000— 100—300 6000— 3,8—16,2 106—1014 0,0002— 30—45
изоляторов   21 000     0,01  

Слюда — один из важнейших природных электроизоляционных мате­риалов. Она имеет набор ценных свойств: высокую электрическую проч­ность, нагревостойкость, влагостойкость, достаточную механическую прочность и гибкость. Слюду применяют чаще всего в электрических машинах высокого напряжения и большой мощности, в том числе в круп­ных турбо- и гидрогенераторах, тяговых электродвигателях, а также в качестве диэлектрика в некоторых конденсаторах. Она представляет собой кристаллический материал в виде тонких пластинок, которые легко рас­щепляются. По химическому составу это водный алюмосиликат. В электро­изоляционной технике используют два вида слюды: мусковит и флогопит.

Мусковиты бывают бесцветными или имеют преимущественно крас­новатый или зеленоватый оттенок. Тонкие пленки этой слюды прозрачны.

Флогопиты (от греч. рhоlоgoроs — огнеподобный) окрашены в янтар­ный, золотистый, коричневый до почти черного цвета. По электрическим свойствам мусковит лучше флогопита, кроме того, он имеет более высо­кие механическую прочность, твердость, гибкость и упругость, а также более стоек к истиранию.

Теплопроводность флогопита немного выше, чем мусковита. Боль­шинство применяемых в электротехнике слюд сохраняет достаточно высокие электрические и механические свойства при нагреве до несколь­ких сотен градусов Цельсия.

Склеивая листочки слюды с помощью природных и синтетических смол или лаков, на их основе получают твердые или гибкие листовые материалы, называемые миканитами. Различают несколько видов мика­нитов — коллекторный, прокладочный, формовочный и гибкий.

Изготовление щепаной слюды и миканитовой изоляции — очень тру­доемкий процесс, поэтому из слюдяных отходов были получены новые материалы, называемые слюдяными бумагами. Основными видами слю­дяных бумаг являются слюдиниты и слюдопласты.

Слюдиниты (за рубежом — самика) изготовляют на основе слюдини­товой бумаги, предварительно обработанной каким-либо клеящим соста­вом (смола, лак). При дальнейшей обработке (пропитке, склеивании с подложками и т.п.) получают листовые слюдиниты (коллекторный, фор­мовочный, гибкий), слюдинитофолий (рулонный материал из слюдинито­вой бумаги с целлюлозным подслоем, пропитанный лаком) и слюдинито­вые ленты. Слюдинитовые материалы по свойствам приближаются к миканитам и даже имеют преимущество — большую равномерность свойств по площади, обладают достаточно высокой механической проч­ностью и нагревостойкостью. Недостатками этих материалов являются пониженная по сравнению с миканитами влагостойкость и малое удлине­ние при разрыве.

Слюдопласты изготовляют склеиванием и прессованием листов слю-допластовой бумаги, которую получают из непромышленных отходов слюды в результате механического дробления частиц. Слюдопластовая бумага существует без связующего, только за счет сил межмолекулярного

взаимодействия частичек. На основе слюдопластовых бумаг, которые толще и прочнее слюдинитовых, изготовляют слюдопласты: коллектор­ный, прокладочный, формовочный, жаростойкий и гибкий, стеклослюдо-пласт, слюдопластофолий, слюдопластовую ленту и др. Слюдопласты по сравнению со слюдинитами имеют повышенные механическую проч­ность и короностойкость, однако являются более дорогими заменителями миканитов.

К минеральным электро- и теплоизоляционным материалам широкого применения относят асбест и асбестоцемент.

Асбест — название группы минералов, сложного состава, обладающих волокнистым строением. Наиболее распространенным по своему про­мышленному значению и добыче является хризотиловый асбест — разно­видность минерала хризотила. Существуют и другие виды —- крокидолит, антофиллит и амозит. Способность волокон асбеста легко расщепляться на тонкие отдельные волоски диаметром в тысячные доли миллиметра и длиной до нескольких сантиметров дала асбесту название «горный лен».

Преимуществом асбеста по сравнению с другими волокнистыми мате­риалами (бумага, картон, дерево) является высокая нагревостойкость: он теряет механическую прочность лишь при 350—500 °С, плавится при температуре более 1150 °С.

Асбестовое волокно легко адсорбирует воду и влагу из воздуха, поэтому оно требует пропитки смолами, битумами и т.п. Диэлектрические свой­ства асбеста невысоки (р = 106 Ом * м, Епр = 1—2 МВ/м), в связи с чем в изоляции для высоких напряжений и частот он не применяется. В асбесте часто присутствуют примеси, в частности магнетит, хромит, кварц и др. Высокое содержание примеси полупроводящего магнетита в виде отдель­ных зерен очень вредно.

Из асбеста изготовляют пряжу, шнуры, ленты, ткани, чехлы и трубки, бумаги, картон и другие изделия. Ленты из асбеста (основа) с высоким содержанием магнетита, со стеклянным или лавсановым утком можно использовать в электрических машинах высокого напряжения, работаю­щих при температурах 200—-400 °С, для выравнивания электрического поля в местах выхода секций обмотки из пазов. В качестве волокнистого напол­нителя асбест применяют при изготовлении пластмасс с органическими связующими (асбодин и электронит). Асбестовые бумага (частично) и ткань (полностью) образуют основу слоистых пластиков - асбогетинакса и асботекстолита, применяемых для клиньев и распорок.

При работе с асбестом следует соблюдать повышенную безопасность, поскольку мельчайшие частицы асбестового волокна, попадающие при вдыхании с воздухом в легкие человека, вызывают тяжелые заболевания. Этот недостаток асбеста является причиной его замещения другими, безо­пасными материалами.

Асбестоцемент (асбоцемент) представляет собой неорганическую пластмассу с наполнителем (асбестом), в которой связующим является

цемент, и выпускается в виде досок толщиной 6—40 мм, труб и некото­рых фасонных изделий. Он обладает высокой нагревостойкостью, искро-и дугостойкостью. Применяют асбестоцемент при изготовлении распре­делительных досок и щитов, стенок искрогасительных камер, панелей и оснований электрических аппаратов и перегородок. Непропитанные асбестоцементные доски имеют довольно большое водопоглопдение (15— 20 %), поэтому при использовании этот материал необходимо пропиты­вать расплавленным парафином, битумом и т.п.

Магнитные материалы

Магнитные материалы в основном играют роль концентраторов, про­водников и источников магнитного потока. Они используются для произ­водства генераторов и двигателей, трансформаторов, аппаратов, электро­магнитов и т.п.

В общем случае все магнитные материалы подразделяются на две большие группы: магнитомягкие и магнитотвердые. Первые в основном применяются как проводники магнитного потока, а вторые — как источ­ники магнитного поля.

Основными характеристиками магнитных материалов являются: коэр­цитивная сила Нс, индукция насыщения Bs, остаточная индукция Br, мак­симальная напряженность магнитного поля Нтах и магнитная проницае­мость µа. Эти характеристики могут быть определены по кривой (петле) магнитного гистерезиса для магнитного материала (рис. 14.1).

Магнитную проницаемость \ха можно определить в любой точке кри­вой по выражению

μa = B/H. (14.5)

Следует отметить, что магнитная проницаемость бывает абсолютной ца и относительной ц. В технике наиболее часто используют величину относительной магнитной проницаемости, которую можно определять

Характеристики электроизоляционных лаков, эмалей и компаундов - student2.ru

Рис. 14.1. Типичная кривая гистерезиса

для различных точек основной кривой намагничивания и при различных воздействиях, получая начальную, амплитудную, дифференциальную и др. значения ц соответственно.

У магнитомягких материалов коэрцитивная сила Нсс < 4 кА/м) малая величина, а у магнитотвердых — большая (Нс > 4 кА/м), поэтому магнитомягкие материалы применяют прежде всего для работы в пере­менных магнитных полях (или, говорят, «в динамических режимах»), а магнитотвердые — в статическом режиме.

Магнитомягкие материалы обычно подразделяют на группы:

технически чистое железо (менее 0,1 % углерода и других примесей в составе);

электротехнические листовые стали (менее 0,05 % углерода и 0,7— 4,8 % кремния в составе);

сплавы с высокой начальной магнитной проницаемостью и,;

сплавы с постоянной магнитной проницаемостью ц;

сплавы с большой индукцией насыщения В5;

сплавы со специальными свойствами;

ферриты.

Технически чистое железо бывает двух типов — электролитическое и карбонильное. Электролитическое железо применяется в постоянных полях, когда требуется большая индукция насыщения В5 . Карбонильное железо используется для изготовления магнитопроводов в высокочастот­ной электротехнике. Технически чистое железо в других устройствах практически не применяется из-за относительно низкого удельного элек­трического сопротивления р.

Листовые электротехнические стали подразделяются по способу про­катки (горячекатаные и холоднокатаные) и используются только в виде тонких (до 0,05 мм) листов, поверхность которых покрывается электро­изоляционным лаком.

В зависимости от содержания кремния в стали меняется область при­менения - для электрических машин, работающих в постоянном магнит­ном поле, или для машин переменного тока, а также для изготовления магнитопроводов трансформаторов.

Сплавы с высокой магнитной проницаемостью в слабых магнитных полях имеют в своем составе помимо железа другие элементы — никель, молибден, хром, марганец, кремний, алюминий. Наиболее известными материалами этой группы являются пермаллои — сплавы железа с нике­лем. Классический пермаллой имеет состав 78,5 % Ni и 21,5 % Fе. Сплав супермаллой имеет приблизительный состав 79 % Ni, 15 % Fе, 5 % Мо и 0,5 % Мп. К этой же группе материалов относятся альфенол (сплав железа с 15 % А1) и алъсифер (сплав железа с 10 % 31 и 5 % А1) и др. Сплавы

применяются для изготовления магнитопроводов малогабаритных транс­форматоров, реле, магнитных экранов и т.п.

Самым известным материалом с постоянной магнитной проницаемо­стью ц является сплав, называемый перминвар (45 % Ni, 30 % Fе, 20 % Со), и имеющий μ = 450. К этим же материалам может быть отнесен и пермаллой, легированный 2—3 % серебра.

Наибольшей индукцией насыщения В! (до 2,4 Тл) наряду кремнистыми электротехническими сталями отличаются сплавы железа с кобальтом, легированные ванадием (49—70 % Со, 2 %Wn). Такие сплавы носят название пермендюр. Они достаточно дорогие, и применяются только в специализированной аппаратуре (осциллографы, репродукторы, мем­браны и др.).

Ферриты различных типов обычно применяются для изготовления магнитопроводов и работают в очень широком диапазоне частот. Досто­инством ферритов является то, что изменением состава и структуры можно управлять их свойствами.

В настоящее время активно применяются аморфные магнитомягкие сплавы для магнитных компонентов и устройств электротехники и элект­роники. Материалы характеризуются высокой магнитной проницаемо­стью μ, малым значением коэрцитивной силу Нс, высокой индукцией насыщения ВS, высоким электрическим сопротивлением, твердостью, износостойкостью коррозионной и радиационной стойкостью.

Свойства аморфных сплавов

Тип сплава µmax 104 Нс, А/м ВS Тл р, Ом * м ТРАБ °С Применение
На основе железа 4—15 3—15 1,3—1.61 1,2—1,3 от -60 до+125 Силовые трансформаторы, дроссели, строчные трансформаторы
Железо-никелевые 15-20 4—14 1,15—1.5 1,3 От-60 до+130 Силовые трансформаторы, высокочастотные магнитные усилители, фазовращатели
Железо-кобальтовые 5—80 0,33—12 0,48—1,5 0,73—1,6 от-60 до+125 Силовые и высокочастотные силовые трансформаторы, высокочастотные магнитные усилители, ключи, экраны

Характеристики электроизоляционных лаков, эмалей и компаундов - student2.ru В зависимости от химического состава эти сплавы разделяют на три группы:

на основе железа (аморфные стали);

железоникелевые;

железокобальтовые.

Некоторые свойства сплавов приведены в табл. 14.11.

К основным недостаткам аморфных магнитомягких сплавов относится недостаточная термическая и временная стабильность, меньшие значе­ния индукции насыщения В5 и температуры Кюри, чем у кристалличе­ских сплавов.

Магнитотвердые материалы имеют не только большую коэрцитив­ную силу Hс, но и высокие значения остаточной индукции. Среди этих материалов надо выделять:

легированные мартенситные стали. Они имеют названия в соответ­ствии с названиями легирующей присадки: хромовые (до 3 % Cr), воль­фрамовые (до 8% W) и кобальтовые (до 15% Со). Используются для изготовления наименее ответственных постоянных магнитов;

сплавы типа алъни. Это сплавы железа с никелем (20-—-30 %) и алюми­нием (11—13 %). Могут быть также добавки меди и титана. Из них изго­тавливаются постоянные магниты литьем или методами порошковой металлургии, так как они очень тверды и хрупки;

сплавы типа альнико. Здесь в состав сплавов входят еще кобальт, медь, титан и ниобий. Эти сплавы дороже сплавов альни, но из них можно изго­тавливать постоянные магниты меньшей массы с теми же магнитными свойствами;

магнитотвердые ферриты. Коэрцитивная сила у них может достигать 240 кА/м, а остаточная индукция Вг невелика. Они изготавливаются короткими по оси магнита, но имеют большую площадь.

Контрольные вопросы

1. Какие основные электрические характеристики материалов вы знаете?

2.Как различают материалы по удельному объемному сопротивлению?

Наши рекомендации