Основное электротехническое
ОБОРУДОВАНИЕ
При разработке схемы развития энергосистемы, выборе параметров и конфигурации электрической сети, выполнении проектов электростанций и ПС проводятся необходимые расчеты с целью проверки работоспособности электрической сети в нормальных и послеаварий-ных режимах. Расчеты базируются на параметрах оборудования электростанций (генераторы) и основного электротехнического оборудования ПС (трансформаторы, выключатели и др.), показатели которых рассматриваются ниже.
ГЕНЕРАТОРЫ
Турбо- и гидрогенераторы
В зависимости от рода первичного двигателя синхронные генераторы делятся на турбогенераторы (с приводом от паровых или газовых турбин) и гидрогенераторы (с приводом от водяных турбин). Обозначения типов синхронных генераторов приведены ниже.
Турбогенераторы | Т Г В В Ф | ||
Турбогенератор........................................................................ | |||
газовое .................... | |||
Охлаждение | водородное ............. водяное..................... форсированное........ | ||
Мощность, МВт Количество полюсов | |||
Гидрогенераторы | |||
Синхронный генератор............................................................ | С | ||
Исполнение Капсулышй........................................... | горизонтальный..... вертикальный......... .................................. | Г В К О В Ф | |
Обратимый................ ........................... Охлаждение | .................................. водяное..................... форсированное........ | ||
Наружный диаметр, длина активной стали, см Количество полюсов | |||
Турбогенераторы выполняются с горизонтальной осью вращения. Диаметр ротора турбогенератора значительно меньше, чем его активная длина, ротор обычно имеет неявнополюсное исполнение. Предельный диаметр ротора при частоте вращения 3000 об/мин по условиям механической прочности составляет 1,2–1,25 м. Активная длина ротора по условиям механической жесткости не превышает 6,5 м.
Стремление к увеличению единичной мощности турбогенераторов реализуется за счет внедрения более интенсивных способов охлаждения без заметного увеличения габаритных размеров. Турбогенераторы мощностью более 50 МВт изготавливаются с водородным или жидкостным охлаждением обмоток. Основные технические данные турбогенераторов мощностью 60 МВт и более приведены в табл. 5.1.
Асинхронизированные турбогенераторы обладают возможностью обеспечивать устойчивую работу с глубоким потреблением и большим диапазоном регулирования реактивной мощности. Применение асин-хронизированных турбогенераторов основывается на тех же принципах, что и при выборе средств компенсации реактивной мощности других видов. Основные технические данные выпускаемых и разрабатываемых асинхронизированных турбогенераторов приведены в табл. 5.2.
Гидрогенераторы выполняются преимущественно с вертикальной осью вращения. Турбина располагается под гидрогенератором, и ее вал, несущий рабочее колесо, сопрягается с валом генератора с помощью фланцевого соединения. Так как частота вращения мала, а число полюсов велико, ротор генератора выполняется с большим диаметром и сравнительно малой активной длиной. Относительно небольшая частота вращения (60–600 об/мин в зависимости от напора воды) определяет большие размеры (до 20 м в диаметре) и массы (до 1500 т) активных и конструктивных частей гидрогенераторов. Как правило, гидрогенераторы выполняются с вертикальным расположением вала. Исключение составляют гидрогенераторы с большой частотой вращения и капсуль-ные гидрогенераторы, которые выполняются горизонтальными. Основные технические данные гидрогенераторов мощностью 52,4 МВт и более приведены в табл. 5.3.
Данные о мощности генераторов соответствуют их номинальному режиму работы. В часы максимума реактивной нагрузки иногда требуется работа генератора с пониженным cos (p. Длительная работа турбогенератора в режиме синхронного компенсатора с перевозбуждением допускается только при токе возбуждения не выше номинального. У генераторов с непосредственным охлаждением, как правило, cos φ ≤ 0,95–0,96. При повышении cos φ до 1,0 длительно могут работать только генераторы с косвенным охлаждением. Максимальная реактивная нагрузка генератора при работе в режиме синхронного генератора с недовозбуждением определяется на основании тепловых испытаний и может быть оценена (для агрегатов 200 и 300 МВт) по рис. 5.1.
Полная мощность гидрогенератора, как правило, не зависит от cos φ и равна номинальной, если гидрогенератор приспособлен для работы в режиме синхронного компенсатора (режим работы определяется при выполнении проекта ГЭС).
В аварийных режимах допускается перегрузка генератора по токам статора и ротора согласно техническим условиям. Если в технических условиях соответствующие указания отсутствуют, кратковременные перегрузки по току статора принимаются по табл. 5.4. Данные по допустимой перегрузке по току ротора генераторов с непосредственным охлаждением приведены в табл. 5.5. Допустимая перегрузка генераторов с косвенным охлаждением обмоток определяется допустимой перегрузкой статора.
Моменты инерции некоторых паровых турбин имеют следующие значения:
Тип турбины | К-100-90 | К-150-130 | К-200-130 |
Момент инерции, т∙м2 | 18,7 | 28,5 | |
Тип турбины | К-300-240 | К-500-240 | К-800-240 |
Момент инерции т∙м2 |
Моменты инерции гидротурбин составляют примерно 10 % момента инерции присоединенных к ним гидрогенераторов.
Таблица 5.1