Лекция 10. Методы расчета индуктивно связанных цепей
Расчёт, анализ, построение частотных характеристик связанных контуров.
АЧХ коэффициента передачи:
АЧХ – коэффициента передачи зависит от фактора связи А. Выделяют три степени связи:
1) А < 1 - слабая;
2) A = 1 - оптимальная;
3) A > 1 - сильная связь.
Если ω = ω0, то а = 0. K(0) = K(ω0).
1) A<1 слабая связь, одногорбая кривая
2) A=1 оптимальная связь, одногорбая кривая.
3) A>1 сильная связь, - двугорбая характеристика. Экстремумы характеристики возникают факторах связи:
a1=0,
Нельзя увеличить фактор связи А так, чтобы провал в характеристике достигал уровня
- нормированный коэффициент передачи.
Такая кривая получается при A = 2.41.
Лекция 11. Цепи при периодических несинусоидальных воздействиях. Несинусоидальные воздействия. Разложение в ряд фурье. Действующее, среднее значения и мощность периодического несинусоидального сигнала.
На практике к несинусоидальности напряжений и токов следует подходить двояко:
в силовой электроэнергетике несинусоидальные токи обусловливают в общем случае дополнительные потери мощности, пульсации момента на валу двигателей, вызывают помехи в линиях связи; поэтому здесь необходимо «всеми силами» поддержание синусоидальных режимов; в цепях автоматики и связи, где несинусоидальные токи и напряжения лежат в основе принципа действия электротехнических устройств, задача наоборот заключается в их усилении и передаче с наименьшими искажениями.
В общем случае характер изменения величин может быть периодическим, почти периодическим и непериодическим. В данном разделе будут рассматриваться цепи только с периодическими переменными.
Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.
В качестве примера на рис. 1,а представлена цепь с нелинейным резистором (НР), нелинейная вольт-амперная характеристика (ВАХ) которого обусловливает несинусоидальную форму тока i в цепи при синусоидальном напряжении u на ее входе (см. рис. 1,б).
Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока):
Максимальное значение - .
Действующее значение - .
Среднее по модулю значение - .
Среднее за период значение (постоянная составляющая) - .
Коэффициент амплитуды (отношение максимального значения к действующему) - .
Коэффициент формы (отношение действующего значения к среднему по модулю) - .
Коэффициент искажений (отношение действующего значения первой гармоники к действующему значению переменной) - .
Коэффициент гармоник (отношение действующего значения высших гармонических к действующему значению первой гармоники) - .
Разложение периодических несинусоидальных кривых в ряд Фурье
Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, в связи с чем проверку на их выполнение проводить не нужно.
При разложении в ряд Фурье функция представляется следующим образом:
Здесь - постоянная составляющая или нулевая гармоника; - первая (основная) гармоника, изменяющаяся с угловой частотой , где Т – период несинусоидальной периодической функции.
В выражении (1) , где коэффициенты и определяются по формулам